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Zusammenfassende deutsche Darstellung der in englischer Sprache abgefassten Doktorar-

beit:

Adsorption des Elementes 112 auf einer Au Oberfläche

Während der letzten 20 Jahre hat sich das Periodensystem bis zu den Elementen 114

und 116 erweitert. Diese sind kernphysikalisch nachgewiesen, so dass jetzt die chemische

Untersuchung an erster Selle steht. Nachdem sich das Periodensystem bis zum Element

108 so verhält, wie man es dem Periodensystem nach annimmt, wird in dieser Arbeit die

Chemie des Elements 112 untersucht. Dabei geht es um die Adsorptionsenergie auf einer

Gold–Oberfläche, weil dies der physikalisch/chemische Prozess ist, der bei der Analyse

angewandt wird.

Die Methode, die in dieser Arbeit angwandt wird, ist die relativistische Dichtefunktional-

methode. Im ersten Teil wird das Vielkörperproblem in allgemeiner Form behandelt,

und im zweiten die grundlegenden Eigenschaften und Formulierungen der Dichtefunk-

tionaltheorie.

Die Arbeit beschreibt zwei prinzipiell unterschiedliche Ansätze, wie die Adsorptionsen-

ergie berechnet werden kann. Zum einen ist es die sogenannte Clustermethode, bei der ein

Atom auf ein relativ kleines Cluster aufgebracht und dessen Adsorptionsenergie berech-

net wird. Wenn es gelingt, die Konvergenz mit der Größe des Clusters zu erreichen, sollte

dies zu einem Wert für die Adsorptionsenergie führen. Leider zeigt sich in den Rechnun-

gen, dass aufgrund des zeitlichen Aufwandes die Konvergenz für die Clusterrechnungen

nicht erreicht wird. Es werden sehr ausfürlich die drei verschiedenen Adsorptionsplätze,

die Top-, die Brücken- und die Muldenposition, berechnet.

Sehr viel mehr Erfolg erzielt man mit der Einbettungsmethode, bei der ein kleiner Cluster

von vielen weiteren Atomen an den Positionen, die sie im Festkörpers auf die Adsorp-

tionsenergie soweit sichergestellt ist, dass physikalisch–chemisch gute Ergebnisse erzielt

werden.

Alle hier gennanten Rechnungen sowohl mit der Cluster- wie mit der Einbettungsmeth-

ode verlangen sehr, sehr lange Rechenzeiten, die, wie oben bereits erwähnt, nicht zu

einer Konvergenz für die Clusterrechnungen ausreichten. In der Arbeit wird bei allen

Rechnungen sehr detailliert auf die Abhängigkeit von den möglichen Basissätzen einge-

gangen, die ebenfalls in entscheidender Weise zur Länge und Qualität der Rechnungen

beitragen. Die auskonvergierten Rechnungen werden in der Form von Potentialkurven,

Density of States (DOS), Overlap Populations sowie Partial Crystal Overlap Populations

analysiert.

Im Ergebnis zeigt sich, dass die Adsoptionsenergie für das Element 112 auf einer Goldoberfläche

ca. 0.2 eV niedriger ist als die Adsorption von Quecksilber auf der gleichen Oberfläche.

Mit diesem Ergebnis haben die experimentellen Kernchemiker einen Wert an der Hand,

mit dem sie eine Anhaltspunkt haben, wo sie bei den Messungen die wenigen zu er-

wartenden Ereignisse finden können.
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Abstract

Adsorption of element 112 on a Au surface

The recent synthesis of element 104 to 116 attracts new interest in the field of the Super

Heavy Elements (SHE) research. Once the SHE were synthesized, the question arises

if they behave as their homologues in the Periodic Table. By now it is experimentally

confirmed that up to Hassium, element 108, this property is perfectly accomplished by

all SHE.

The production of isotopes with half-lives of ≈ 30 min for element 112 justifies chem-

ical experiments for it to be done. Using the gas-phase-chromatography technique the

adsorption energy of element 112 on a Au surface is aimed to be measured.

In this work the relativistic density functional method is used in order to calculate this

quantity. The many-body problem is generally described in the first chapter, and in

the second the principle and general formulation of the Density Functional Theory is

presented.

This work describes two different approximations for the calculation of the adsorption

energy. The first one is the so-called cluster method, in which the surface is modeled by

a relatively small cluster and the adsorption energy of the ad-atom on it is calculated.

All the three possible adsorption site on a (100) fcc surface were taken into account:

the top-, bridge-, and hollow-position. To obtain the adsorption energy the convergence

with the cluster size has to be checked. Unfortunately, due to the long computation time

necessary for the self-consistent calculations, this convergence with the number of atoms

in the cluster was not achieved.

The use of the embedding method was more sucessfully. Within this method a small

cluster is embedded in a bigger one, formed by Au atoms placed in the (100) fcc lattice

points. The atoms in the environment cluster are not treated self-consistently during the

relativistic calculations, but they will produce an external potential and will contribute

to the exchange correlation energy of the inner system. This procedure allows to take

into account the influence of a bigger gold solid to the adsorption energy and gives a

good description of the physical/chemical properties of the chemisorption process.

A large amount of time and computer memory size is required in all these calculations,

for both cluster and embedding method. As mentioned above, the convergence with

the cluster size for the cluster calculations was not achieved. This work contains also

a detailed description of the influence of the basis on the quality of the results and

the duration of the computation. For the cluster considered in the work, the potential

energy curves, the total and partial Density of States (DOS) as well as the Partial Crystal

Overlap Population are anlysed.

This analysis shows that the adsorption energy of element 112 on a gold surface is about

0.2 eV smaller than the corresponding value for the adsorption of Hg on the same surface.

This result offers a benchmark to the experimentalist for this value, which is helpful in

designing the chemical experiment with element 112.
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Chapter 1

Introduction

The fundamental interest in super heavy element research is connected with the ques-

tions: How many elements exist in nature? How long is their lifetime? Which properties

determine their stability? How can they be synthesized? What are their chemical prop-

erties? How are the electrons arranged in the strong field of the nuclei? e.t.c.

The recent synthesis of the elements 104 to 116 attracts new interest in this field. The

properties of the nuclei are not smooth uniform functions of the proton and neutron

numbers, but show non-uniformities as evidenced by variations in the measured atomic

masses. Just like the electron cloud of the atom, the nuclei in the nucleus also exhibit

a shell structure, whose arrangement for certain number of protons and/or neutrons

(2, 8, 20, 28, 50, and 82), the so called magic numbers leads to particularly stable

configurations.

The elements beyond uranium have been discovered as artificial elements. The transura-

nium elements up to fermium can be produced by neutron capture and successive β−

decay. This method of breeding of the transuranium elements in a high flux reactor

allows to climb up the Periodic Table element by element up to fermium, where this

process ends due to the short alpha and fission half-lives. The transfermium region is

best accessible using heavy ion reactions: the bombardment of heavy targets with

heavy ions from an accelerator. Mendelevium was the first element synthesized in a

heavy–ion reaction and the first element obtained in a quantity of one–atom–at–a–time.

There are two types of heavy–ion reactions which have been successfully used so far in

the synthesis of transmendelevium elements:

• a) cold fusion, Pb or Bi targets and the appropriate projectile leading to low

excitation energies in the completely fused species (with resulting high survival

probabilities)

• b) hot fusion, the application of actinide targets and lighter projectile beams,

leading to larger fusion cross section but reduced survival probabilities (due to the

higher excitation energies of the completely fused species).

The major difference between them is the excitation energy of the compound nucleus

at the lowest beam energies necessary to initiate a fusion reaction. Usually 10–20 MeV
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are used in reactions with lead or bismuth targets and 35 to 45 MeV in reactions with

actinide targets, which lead to the above terminology.

A second important difference is that the synthesis of an element by hot fusion reaction,

compared with a cold fusion reaction, leads to more neutron rich isotopes, which are

closer to the region of spherical SHEs (Super Heavy Elements) and for which also longer

half-lives were expected.

The cross section is less than in the neutron capture and values are considerably below

the geometrical size of the nuclei.

Historically, the first accelerators used for the production of heavy elements were the

cyclotrons in Berkeley, California, and later in Dubna, Russia. These were only able to

accelerate light ions up to about neon with sufficient intensity and energy high enough for

fusion reactions. The U300 and U400 (300 and 400 cm diameter) cyclotrons were built

in Dubna for the investigation of reactions using projectiles near calcium. In Berkeley a

linear accelerator HILAC (Heavy Ion Linear Accelerator), later upgraded to SuperHILAC

was built. During the years 1969–74, the UNILAC (UNIversal Linear ACcelerator) was

constructed in Darmstadt, Germany, aiming the acceleration of ions as heavy as uranium.

The developments in the laboratories in Berkeley, Dubna and also in Finland, France,

Italy and Japan are similar and are usually made in close collaboration and exchange of

known–how.

The term ”super heavy element” was coined for elements which exists solely due to their

nuclear shell effects. The series of super heavy elements are starting with the element

104, Rutherfordium Rf, for which the known isotopes exhibit half-lives of up to one

minute. It is worth noting that Rutherfordium is also the first element in the series of

transactinide elements.

Element 112 was first synthesized [1] in January–February 1996, at GSI, using the reac-

tion:

70Zn +208Pb →278112∗

Two chains of localized alpha–emitters were identified as originating with 277112, the first

two shown in Fig. 1.1. These were assigned to the one–neutron emission channel and the

observed cross section was of 0.5 pb. The first chain has subsequently been eliminated [2]

after the reanalysis of the data. The experiment was repeated in May 2000 aiming to

confirm the synthesis of 277112 [3]. During a similar measuring time one more decay

chain (on the left–hand side in Fig. 1.1) was observed, which was in agreement with the

one observed in the first experiment.

In 1999, a Dubna-GSI-RIKEN collaboration [4] reported the successful synthesis of 283112

using the reaction

48Ca +238U →286 112∗ →283 112 + 3n

in which the two events decay by spontaneous fission with a lifetime of 2 min. Two fission

events were measured with a cross section of 5.0 pb. The experiments were continued in
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Confirmation of element 112

1st Experiment 1996:
*E = 10 MeV

2 events
11.65 MeV

0.4 ms
11.45 MeV

0.2 ms

9.73 MeV
170 ms

11.08 MeV
0.11 ms

9.17 MeV
7.1 s

9.23 MeV
19.7 s

8.77 MeV
24.1 s

4.60 MeV (escape)
7.4 s

1.22 MeV
32.7 s

0.52 MeV
4.7 s

8.34 MeV
15.0 s

112277 CN

110273

Hs269

Sg265

Rf261

No257

112277 CN

110273

Hs269

Sg265

Rf261

No257

Fm253

11.17 MeV
1.406 ms

11.20 MeV
0.310 ms

0.2 MeV (escape)
14.5 s

9.18 MeV
22.0  s

*E = 10 MeV and 12 MeV

2nd

1 event

Rf261

Sg265

Hs269

110273

112277 CN

Date: 05 May 2000

Date: 01 Feb 1996

Date: 09 Feb 1996

Experiment 2000:

Figure 1.1: Three decay chains measured in experiments at SHIP in the cold fusion

reaction 70Zn+208Pb →278 112∗. The chains were assigned to the isotope 277112 produced

by evaporation of one neutron from the compound nucleus.

March 1999 and the element 287114 was produced [5], and element 283112 resulted in the

α decay chain. The element 289114 was produced [6] in the reaction 48Ca +244Pu, which

decayed through 285112. The isotope 284112 was obtained [7] in the alpha decay chain of

element 292116, obtained in the reaction 48Ca +248Cm →284 116∗.

One of the most important question for chemists is: do the rules of the Periodic Table

still hold for the heaviest elements? The position of an element is determined by its

atomic number and electronic configuration. Very early theoretical predictions of this

chemical behaviour have been made on the basis of Dirac–Fock type calculations. A

review of 1975 summarizes the results for all superheavy elements from Z = 100 to

Z = 172 [8]. The general trend of the predictions still holds true nowadays. Of course

experimentally this structure cannot be measured, and information on their chemical

behaviour or obtained from the relation with its daughter products is often used to place

an element in a chemical group. For the SHEs, which have very small cross sections and

half–lives, fast chemistry techniques based on chromatographic separations are used.

Chemistry of elements 104 and 108 performed by these techniques, proved that they

behave as their homologues in the Periodic Table. Some chemical experiments with

element 112 were performed and new other are planed to be made, based on gas phase

chromatography technique, where one observes the adsorption of it on metal surfaces.

The chemical information obtained from experiments with elements with very short

half–lives is limited to proof if the new element behaves similarly or differently than its
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lighter congeners in the chromatographic separation process. The deviations in their

behaviour is due to the very strong relativistic effects on the valence electronic shells

of the heavy and super heavy elements. The experiments performed with element 112,

aimed to determine if it behaves like Hg or rather as a noble gas, Rn. The metal

used in the chromatographic column is Au, on which both Hg and element 112 are well

adsorbed and the physical quantity to be measured is the adsorption energy. Theoretical

predictions of experimentally studied properties are especially valuable in order to design

the sophisticated and expensive experiments.
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Chapter 2

The many-body problem

Prediction of the electronic and geometric structure of a solid requires calculation of

quantum-mechanical total energy of the system and subsequent minimisation of that

energy with respect to the electronic and nuclear coordinates. If one looks at small

atoms the non-relativistic theory is a very good approximation, but when heavy atoms

are involved, the relativistic effects must be considered.

The Hamilton operator describing a system of N nuclei and M electrons described by

position vectors �RA and �ri, respectively, with a pair (Coulomb) interaction between the

components is given, in atomic units, by:

H =
N∑

A=1

T̂A +
M∑
i=1

t̂i −
M∑
i=1

N∑
A=1

ZA

|�ri − �RA|
+

1

2

M∑
i,j=1
i�=j

1

|�ri − �rj | +
1

2

N∑
A,B=1

ZAZB

|�RA − �RB|
. (2.1)

The first two summations are the kinetic energy operators of the nuclei and electrons;

the third term represents the Coulomb interaction between electrons and nuclei; third

fourth and fifth terms represent the repulsion between electrons and between nuclei,

respectively.

To find the total ground state energy the following eigenvalue equation:

j−

x

y

z

A

i

B i,j = electrons
A, B = nuclei

jr

jrririj= −riA ri A= −R

ArjrjA= −R

ri

AR

BR

BRARABR =

Figure 2.1: A molecular coordinate system: i, j = electrons; A, B = nuclei.
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HΨ = EΨ (2.2)

is solved under the constraint

〈Ψ|Ψ〉 = 1

E is the total energy of the system and ψ is the total quantum state of this system. It is

impossible to solve exactly this equation and several approximations have to be made.

2.1 The Born-Oppenheimer approximation

Since nuclei are much heavier than electrons, they move more slowly. The total energy

of a given nuclear configuration can be then estimated by keeping the nuclei fixed, and

minimising the energy of the electrons in the constant external potential originating from

the nuclei. The kinetic energy of the nuclei in (2.1) can be neglected and the last term,

the repulsion between the nuclei, can be considered to be constant. The remaining terms

2,3 and 4 in (2.1) are called the electronic Hamiltonian, and the corresponding eigenvalue

equation is now:

HelΨel = EelΨel (2.3)

where the electronic wave function,

Ψel = Ψel({�ri}; {�RA})

depends on the electronic coordinates but depends parametrically on the nuclear coordi-

nates, as does the electronic energy Eel = Eel({�RA}). If the thermal energy of the atoms

is expected to have any influence on the nuclear motion, it can be included afterwards.

Fixing the nuclei like this is called the Born-Oppenheimer approximation.

2.2 The Hartree–Fock method

For a system of N non-interacting fermions the wave function can be constructed as a

Slater determinant of the orthonormalized single-particle spin-orbitals:

|Ψel〉 =
1√
M !




ψ1(�r1, s1) ψ1(�r2, s1) ... ψ1(�rM , s1)

ψ2(�r1, s1) ψ2(�r2, s1) ... ψ2(�rM , s1)

ψ3(�r1, s1) ψ3(�r2, s1) ... ψ3(�rM , s1)
...

...
...

ψM(�r1, s1) ψM(�r2, s1) ... ψM(�rM , s1)




(2.4)

where si indicates that each spatial orbital is multiplied by a spin function. Such a Slater

determinant is total anti-symmetric. Furthermore, it is easily verified that the Slater
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determinant obeys the Pauli exclusion principle: If two electrons are in the same state,

they have the exact same orbitals, then two column vectors of the Slater determinant

are identical, and the wave function equals zero.

The minimisation of the total energy of a Slater determinant wave function using the

interacting Hamiltonian (2.3), keeping the orthogonality between the single-particle spin

orbitals, is known as the Hartree–Fock method [9, 14].

This method conceptually implies solving an eigenvalue equation (2.5) for all single

particle quantum states, with a mean field effective potential for each state:

F̂(�r)|ψi〉 =
M∑
i=1

εij |ψi〉, i = 1, ..., M . (2.5)

F̂ is the Hartree-Fock operator given by:

F̂(�r) = t̂ −
N∑

A=1

ZA

|�r − �RA|
+

M∑
j=1

∫
ψ∗

j (�r
′)

1

|�r − �r ′|ψi(�r
′)d3�r ′ + V ex(�r), (2.6)

where the exchange potential V ex(�r) is a non-local operator:

V ex(�r)ψi(�r) = −
M∑

j=1

∫
ψ∗

j (�r
′, s ′)

1

|�r − �r ′|ψi(�r
′)d3�r ′ds ′ψj(�r, s) (2.7)

The evaluation of the exchange term is difficult for the non-local character of the operator.

Dirac [10] and Bloch [11] showed that the exchange integral is expressible in terms of

the electronic density.

Since the mean field has to be known to solve the eigenvalue problem, and the eigenstates

have to be known to calculate the mean field potential, the equations can not be solved

directly. The way they are solved in practical calculations is to use an iterative procedure:

An initial guess is made for the single-particle states, and this is used to calculate the

mean field potential. The mean field potential thereby obtained is then used to calculate

an improved approximation to the single-particle states. This iteration procedure is

continued until the mean field is self-consistent with the quantum states within some

small error margin. Such a method is called a Self Consistent Field (SCF) procedure.

At self-consistency the Hartree-Fock wave function, ΨHF , is the Slater determinant of

single particle states.

The Hartree-Fock energy is determined:

EHF = THF + UHF + WHF (2.8)

where THF and UHF are the expectation values of t̂ and the electron-nuclei Coulomb

potential using ΨHF , and the later one is the Hartree-Fock electron-electron interaction

energy, which includes the Hartree energy and the (HF-)exchange energy.

WHF =
1

2

M∑
i,j=1

∫
ψ∗

i (�r
′, s ′)ψ∗

j (�r, s)
1

|�r − �r ′|ψi(�r
′s ′)ψj(�r, s)d

3�r d3�r ′dsds ′

−1

2

M∑
i,j=1

∫
ψ∗

i (�r
′, s ′)ψ∗

j (�r, s)
1

|�r − �r ′|ψj(�r
′, s ′)ψi(�r, s)d

3�r d3�r ′dsds ′ (2.9)
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In quantum physics the definition of the exchange energy is slightly different, as it is

the same summation of integrals but using the Kohn-Sham single-particle states instead

of the Hartree-Fock states. The HF-exchange energy is a non-positive function that

has the important property that in the two summations of (2.7) its terms with i=j

cancels with equivalent terms of the Hartree energy. An electron does not experience

any repulsion due to itself. The energy cancellation is therefore a correction to the

wrongly determined Coulomb interaction in the individual electron clouds and is called

the self–energy Hartree-correction.

2.3 Scaling behaviour of quantum mechanical

methods

The Hartree-Fock energy is not the correct ground state energy, as one Slater determinant

does not provide enough variational freedom to expand the entire Hilbert space of a set

of fully interacting fermions. The difference between the total ground state energy and

the Hartree-Fock energy is the chemists definition of the so called correlation energy:

Echem
corr = Etot − EHF (2.10)

In atoms the relativistic energy correction is already larger than the correlation energy in

an Aluminium atom (with Z=13), and it grows much more rapidly than the correlation

energy with increasing atomic number. This could seem to indicate that the relativistic

corrections rapidly become more important than correlation corrections in the description

of molecules and solids containing heavy elements. This is however not the case, as the

relativistic energy is related almost exclusively to the inert core electrons. The electron

correlation energy on the other hand is closely related to the bonding between atoms.

Whereas all other quantities discussed so far are easy to obtain (in the sense that they

are well defined and can be found for a medium sized system in relatively short time on

a computer), the correlation energy is a very difficult quantity to calculate. This is be-

cause the correlation energy is so directly related to the degrees of freedom in the Hilbert

space, which can not be spanned by the single Slater determinant. The large majority

of wave function methods tries to span the Hilbert space by introducing multiple Slater

determinants and including the unoccupied Hartree-Fock one-electron orbitals in this

expansion. The ultimate goal of this would be to give a correct representation of the full

electronic wave function. The wave function in the Born-Oppenheimer approximation

is a 3M dimensional complex function with M spin coordinates, where M is the num-

ber of electrons. The multi-dimensional search of such a wave function is prohibitively

expensive from a computational point of view for even very small systems. This is the

motivation for the use of the density functional theory.

The quick development of computational methods in Physics and Chemistry nowadays

allows to calculate energies and other properties of atoms, molecules and small clusters

with ab-initio methods. First of all there are the ’classical’ but still very popular methods

8



in quantum chemistry such as the Hartree- (Dirac-) Fock-Methods [12–14], Configuration

Interaction (CI), Multiconfiguration Dirac-Fock (MCDF), second order Møller-Plessed

MP2 [15], coupled cluster single double (triple) excitation CCSD(T) [16–19] and s.o.

The great advantage of all these methods is the possibility to achieve the ’exact’ solution

(within the chosen method) just by increasing the number of configurations. Unfor-

tunately this number increases as power of 4, 5 or even 7 with the number of active

electrons, so that all these methods fight with the limit of the memory and CPU-power.

Therefore these methods can nowadays only be applied to systems with relatively small

numbers of active electrons such as atoms, small molecules and small clusters. The re-

sults achieved for these systems are very good and serve as benchmarks. In the last

two decades however many computational improvements are made to make these meth-

ods more efficient. With some approximations for example it was possible to achieve

first a quadratic [20, 21] and later on even a linear [22, 23] scaling for the Hartree-Fock

method. A linear scaling has been also achieved for the MP2 [24, 25] as well as for the

CCSD(T) [26] methods.
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Chapter 3

Density Functional Theory

In the recent years DFT has become a widely used formalism for providing a theoretical

picture into the microscopic physical process which determine the macroscopic properties

of interacting electronic systems. The DFT is based on the earlier fundamental work of

Hohenberg and Kohn [27] and Kohn and Sham [28].

3.1 The Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems relate to any system consisting of electrons moving under

the influence of an external potential. Stated simply they are as follows:

Theorem 1

The external potential vext(�r), and hence the total energy, is a unique functional of the

electron density ρ(�r).

The energy functional E[ρ(�r)] alluded to in the first Hohenberg-Kohn theorem can be

written in terms of the external potential in the following way,

E[ρ(�r)] =

∫
d3�rρ(�r)vext(�r) + F [ρ(�r)] (3.1)

where F [ρ(�r)] is an unknown, but otherwise universal functional of the electron density

only. Correspondingly, a Hamiltonian for the system can be written such that the elec-

tron wavefunction that minimises the expectation value gives the ground state energy

(assuming a non-degenerate ground state):

E[ρ(�r)] = 〈Ψ|H|Ψ〉 (3.2)

Theorem 2

The ground state energy can be obtained variationally: the density that minimises the

total energy is the exact ground state density.

Although the Hohenberg-Kohn theorems are extremely powerful, they do not offer a

way of computing the ground-state density of a system in practice. About one year after

the seminal DFT paper by Hohenberg and Kohn, Kohn and Sham [9] derived a simple

method for carrying out DFT calculations, that retains the exact nature of DFT.
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3.2 The Kohn-Sham Formulation

The Kohn-Sham formulation centres on mapping the full interacting system with the

real potential, onto a fictitious non-interacting system whereby the electrons move within

an effective ”Kohn-Sham” single-particle potential vKS(�r). The Kohn-Sham method is

still exact since it yields the same ground state density as the real system, but greatly

facilitates the calculation.

First consider the variational problem presented in the second Hohenberg-Kohn theorem

- the ground state energy of a many-electron system can be obtained by minimising the

energy functional

δ

[
F [ρ(�r)] +

∫
d3�rρ(�r)Vext(�r) − µ(

∫
d3�rρ(�r) − N)

]
= 0 (3.3)

where µ is the Lagrange multiplier associated with the constraint of constant N . The idea

of Kohn and Sham was to set up a system where the kinetic energy could be determined

exactly, since this was a major problem in Thomas-Fermi theory. This was achieved by

invoking a non-interacting system of electrons.

The universal functional F [ρ(�r)] was then partitioned into three terms, the first two of

which are known exactly and constitute the majority of the energy, the third being a

small unknown quantity

F [ρ(�r)] = TS[ρ(�r)] + EH [ρ(�r)] + Exc[ρ(�r)]. (3.4)

TS[ρ(�r)] is the kinetic energy of a non-interacting electron gas of density, EH [ρ(�r)] is the

classical electrostatic (Hartree) energy of the electrons,

EH [ρ(�r)] =

∫ ∫
d3�rd3�r′

ρ(�r)ρ(�r′)
|�r − �r′| , (3.5)

and Exc[ρ(�r)] is the exchange-correlation energy, which contains the difference between

the exact and non-interacting kinetic energies and also the non-classical contribution to

the electron-electron interactions, of which the exchange energy is a part.

Application of the Hohenberg-Kohn variational principle to Kohn-Sham orbitals gives

the canonical Kohn-Sham orbital equations:

(
t̂ + VKS(�r)

)
ψj(�r) = εjψj(�r) . (3.6)

where j runs over all the electrons, ψj and εj are the Kohn-Sham wave function of

electronic state j and the Kohn-Sham eigenvalue, respectively.

Here the Kohn-Sham potential VKS(�r) is given by

VKS(�r) = Vext(�r) + VH(�r) + Vxc(�r) = Veff [ρ(�r)] + Vex[ρ(�r)], (3.7)

with the Hartree potential VH(�r)

VH(�r) =

∫
d3�r′

ρ(�r′)
|�r − �r′| , (3.8)
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Veff(�r) = Vext(�r) + VH(�r) (3.9)

and the exchange-correlation potential Vxc(�r),

Vxc(�r) =
δExc[ρ(�r)]

δρ(�r)
. (3.10)

The ground state density is obtained by solving the Kohn-Sham equations, and the

density is constructed from

ρ(�r) =

N∑
j=1

|ψj(�r)|2 . (3.11)

These equations are nonlinear like the Hartree-Fock equations and are thus solved by an

equivalent self consistent procedure.

Although exact in principle, Kohn-Sham theory is approximate in practice because of the

unknown exchange-correlation functional Exc[ρ(�r)]. An implicit definition of Exc[ρ(�r)]

can be given through 3.4 as,

Exc[ρ(�r)] = T [ρ(�r)] − TS[ρ(�r)] + Eee[ρ(�r)] − EH [ρ(�r)], (3.12)

where T [ρ(�r)] and Eee[ρ(�r)] are the exact kinetic and electron-electron interaction ener-

gies respectively.

An exchange-correlation energy functional has to be supplied in order to obtain useful

results by the Kohn-Sham scheme.

3.3 The relativistic Kohn–Sham equations

One fundamental limitation of the density functional theory is that it is based on non-

relativistic quantum theory and therefore is not applicable when relativistic effects are

large. This limitation is more significant when the description of heavy metals and

molecules is involved. It has already been pointed out by Rajagopal and Callaway [29]

that the two theorems given by Hohenberg and Khon [27], on which the density functional

formalism is based, can be generalised to include relativistic effects.

The first theorem, the existence theorem, becomes [32]:

There exists a one-to-one correspondence between the class of external potential just

differing by gauge transformations, the associated class of ground states and the ground

state four current jν .

The existence of a unique relation between the ground state and jν has as consequence

that all ground state observables are unique functionals of the four current, in particular

the ground state energy:

Etot[j
ν ] = 〈Ψ[jν]|H|Ψ[jν ]〉. (3.13)

The variational principle for the RDFT gives:

δ

δjν [�r]

[
Etot[j

ν ] − µ

c

∫
d3xj0(�x)

]
j=j0

= 0, (3.14)
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with the inclusion of the charge conservation.

The four current components are defined by

j0(�r) = ρ(�r) =
∑

i

niψi
+(�r)ψi(�r), jk(�r) =

∑
i

niψ
+
i (�r)αkψi(�r), (3.15)

where ψi(�r) are the four–component Dirac spinors, and αk are the 4 x 4 Dirac-matrices

�α =

(
0 �σ

�σ 0

)
, β =

(
I 0

0 −I

)
(3.16)

.

In the above equation �σ and I are respectively the 2x2 Pauli matrices and the unit

matrix.

The relativistic Kohn-Sham equations are(
t̂ + Vex(�r) + Veff [jµ] + Vxc[jµ]

)
ψj(�r) = εjψj(�r) , (3.17)

with the kinetic energy operator being the Dirac operator

t̂ = �α�p + c2(β − 1). (3.18)

3.4 Non-collinear form of Kohn-Sham equations

Practical experience has shown that the functionals which depend on the density only

cannot reproduce the experimental results [30,31]. One of the reasons was that the three

dimensional current for a relativistic electron gas is zero, and therefore these function-

als cannot describe system with internal magnetic field properly. One can rewrite the

functional using the Gordon decomposition as functional dependent on the density and

magnetization density. In the Gordon decomposition the three-dimensional current is

represented as the sum of the orbit current and the magnetization. The first term is

usually neglected because in most cases it is small in comparison to the second one. A

general derivation can be found in [32,33]. One can prove [32,33] that the ground state

energy is an unique functional of the ground state density ρ and magnetization density

�m, provided the system is not subject to an external magnetic field. This means that

the system can be completely described by its density and magnetization density.

Within this method the total energy of a molecular system is given by the expression

E =

M∑
i=1

ni

〈
ψi

∣∣ t̂
∣∣ψi

〉
+

∫
V Nρ d3 �r +

1

2

∫
V Hρ d3 �r + Exc[ρ, �m] +

∑
p>q

Zp Zq

|�Rp − �Rq|
(3.19)

with the density ρ and magnetization density �m which are defined by

ρ(�r) =
M∑
i=1

ni ψ
+
i (�r)ψi(�r) (3.20)

�m(�r) = −µB

M∑
i=1

niψ
+
i (�r)β�Σψi(�r) . (3.21)
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Here ni are the occupation numbers, �r, �Rq are the electronic and nuclear coordinates

respectively and µB is the Bohr-magneton. The index i runs over all occupied molecular

orbitals M , which in our case are four-component Dirac-spinors. The four-component

spin-operator �Σ = (Σx, Σy, Σz) is built from the two component Pauli matrix σ. The

Dirac kinetic energy operator has the form (we use atomic units throughout)

t̂ = c �α · �̂p + c2(β − I) , (3.22)

where �α = (αx, αy, αz) and β are the four-component Dirac matrices in the standard

representation [34] and I is the four-component unit matrix.

V N is the nuclear potential

V N =
∑

p

− Zp

|�r − �Rp|
, (3.23)

where the index p runs over all nuclei in the molecular system.

Exc is the exchange-correlation energy functional. V H is the electronic Hartree potential

V H(�r) =

∫
ρ(�r ′)
|�r − �r ′| d3 �r ′ . (3.24)

The variation of the energy functional (3.19) leads to the relativistic Kohn-Sham (KS)

equations in their general form for the molecular orbitals ψi{
t̂ + V N + Ṽ H +

δExc[ρ, �m]

δρ
− µBβ�Σ · δExc[ρ, �m]

δ�m

}
ψi = εiψi i = 1, ..., M ′ (3.25)

Here Ṽ H is the Hartree potential from the model-density and M ′ ≥ M is the number of

molecular orbitals.

3.5 Choise of the Exchange-Correlation Functional

Functionals essentially try to model the exchange-correlation hole. This is done with

varying degrees of sophistication depending on the approach taken. However, all func-

tionals can be written in the following general form,

Exc[n(�r)] =

∫
d3�rn(�r)εxc(�r), (3.26)

where εxc(�r) is the exchange-correlation energy per particle, or energy density for short.

3.5.1 Local–density approximation

The oldest, simplest and probably the most important functional is the local density

approximation (LDA), which was proposed by Hohenberg and Kohn in their original DFT

paper [27]. The LDA consists of locally approximating the true exchange-correlation
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Figure 3.1: Schematic representation of the local density approximation. vxc(�r1) =

vxc[n(�r1)] and vxc(�r2) = vxc[n(�r2)].

energy of a system by the exchange-correlation energy associated with a homogeneous

electron gas of the same density. The homogeneous gas is the only system for which the

form of the exchange-correlation energy is known precisely.

The LDA is only dependent on the local density, and the total energy is commonly

written as,

ELDA
xc [n(�r)] =

∫
d3�r n(�r)εhom

xc (�r) (3.27)

where εhom
xc (�r) is the exchange-correlation energy density corresponding to a homogeneous

electron gas of density n(�r).

3.5.2 The Generalised Gradient Approximation (GGA)

Hohenberg and Kohn presumed that the LDA would be too simplistic to work for real

systems and so proposed an extension to the LDA known as the gradient expansion

approximation (GEA) [27]. The GEA is a series expansion of increasingly higher order

density gradient terms. The first order form of the GEA was subsequently implemented

and tested for atoms and molecules and was a complete failure. Despite the disappointing

results, the GEA provided the basis for the generalised gradient approximation (GGA)

which is currently the most popular exchange-correlation functional in condensed matter

physics.

The vital steps that lead to the GGA were principally made by Perdew and co-workers

[35] who devised a cutoff procedure that sharply terminates the GEA exchange-correlation

hole in real-space using delta functions, in order to restore the sum rule and non-positivity
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hole conditions. As a result of this procedure the GGA can be conveniently written in

terms of an analytic function known as the enhancement factor, Fxc[n(�r),∇n(�r)], that

directly modifies the LDA energy density,

EGGA
xc [n(�r)] =

∫
d3�rn(�r)εhom

xc (�r)Fxc[n(�r),∇n(�r)]. (3.28)

The development of gradient corrections, which actually improves the local functionals,

has been following two different ideas. The idea primarily advocated by Becke ( [36–42]

is that ”everything is legal”. The argument here is that going away from the local den-

sity functionals, the true first principles or ab initio aspect is generally lost. One can

therefore choose any functional for any reason, and the quality of the functional is then

determined afterwards by actual application to physical systems. The idea of Becke

stands in contrast to the idea primarily advocated by Perdew [43–50] that the devel-

opment of exchange-correlation functionals should be based on basic principles derived

from quantum mechanics. These basic principles can be scaling relations, correct limits

for high and low densities, correct Local Spin Density Approximation limit for slowly

varying densities as well as fulfilment of exact relations on the exchange and correlation

holes.
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Chapter 4

Technical aspects

4.1 MO-LCAO Method

To solve the Kohn-Sham equations (3.6) we use the MO-LCAO (Molecular Orbital –

Linear Combination of Atomic Orbitals) method. Within this method we expand the

molecular orbitals ψi(�r) in a series of symmetry-adapted orbitals (SO) χj(�r)

ψi(�r) =
∑

j

cjiχj(�r) . (4.1)

The SO’s themselves are expanded in a series of atomic orbitals ϕν

χj(�r) =
∑

ν

dνjϕν(�r) (4.2)

where the expansion coefficients dνj can be determined from Group theory [51]. Atomic

orbitals are solutions of the atomic Kohn-Sham equation.

Inserting 4.1 in the equation 3.6 gives the matrix equation in the symmetry orbital

representation

H c = S c ε (4.3)

where H and S are the Fock and overlap matrices respectively, c is the coefficient-matrix,

and ε is the eigenvalue diagonal matrix.

According to the Group theory [51] both the Overlap-Matrix and Fock-Matrix have in the

SO-representation a block structure. Due to this fact the matrix equation (4.3) is split

up into g (number of irreducible representations of the symmetry group) independent

systems of linear equations. The dimension of each of these sub-matrix-equations is

smaller than the original matrix-equation (4.3). This reduces considerable the calculation

time.

Another big advantage of the SO-representation is the possibility to reduce the number of

integration points. In fact the SO have already the symmetry properties of the molecular

system and therefore only the so called symmetry points are requiread for the calculation

of the matrix elements. Depending on the symmetry of the system the difference could

be up to factor 10 what again reduces the total calculation time.
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4.2 Calculation of the Hartree potential

One important aspect in connection with the computation of the total energy is the

calculation of the Hartree energy (3.5) via the Hartree potential (3.8). The evaluation

of VH(�r) on the foundation of 3.8 would be too time consuming for the implied three-

dimensional integration.

4.2.1 The model density

Several suggestions have been made to obviate this impediment. The basic idea is to

introduce an auxiliary density, ρ̃(�r) which fits the ”true” density ρ(�r), and leads to a

considerable simplification in calculating the Hartree potential. Thus

ρ(�r) = ρ̃(�r) + ∆ρ(�r), (4.4)

where the modelled density ρ̃(�r) is obtained by a multipolar expansion [52] over spherical

harmonics Y m
l (θk, φk) and radial functions F j

k (rk) centred on the atoms of the system.

ρ̃(�r) =

NA∑
k=1

Mk∑
j=1

Lj∑
l=0

l∑
m=−l

Qkl
jm F j

k (rk)Y
m
l (θk, φk) ≡

∑
ν

qν ϕν . (4.5)

Here k runs over all NA atoms, and j over all basis functions on each centre k. The

insertion of (4.5) into (3.8) gives corresponding approximate expression for the VH(�r)

ṼH(�r) =

NA∑
k=1

Mk∑
j=1

Lj∑
l=0

l∑
m=−l

Qkl
jm

∫
F j

k (r′k)Y
m
l (θ′k, φ

′
k)

|�r − �r ′| d3�r′. (4.6)

After the expansion of 1/|�r − �r ′| in terms of Legendre polinoms,

1

|�r − �r ′| =




∞∑
l′=0

r′l
′

k

rl′+1
k

Pl′(cosωk) rk > r′k ,

∞∑
l′=0

rl′
k

r′l′+1
k

Pl′(cos ωk) rk < r′k
(4.7)

and by putting them down through real spherical harmonics,

Pl′(cos ωk) =
4π

2l′ + 1

l′∑
m′=−l′

Y m′
l′ (θk, φk)Y

m′
l′ (θ′k, φ

′
k), (4.8)

we will have

1

|�rk − �r ′
k|

=




∞∑
l′=0

r′l
′

k

rl′+1
k

4π
2l′+1

l′∑
m′=−l′

Y m′
l′ (θK , φk)Y

m′
l′ (θ′k, φ

′
k) rk > r′k ,

∞∑
l′=0

rl′
k

r′l
′+1

k

4π
2l′+1

l′∑
m′=−l′

Y m′
l′ (θk, φk)Y

m′
l′ (θ′k, φ

′
k) rk < r′k

(4.9)

By introducing this expression in (4.6) and in view of the fact that∫
dΩ′

K Y m
l (θ′K , φ′

K) Y m′
l′ (θ′K , φ′

K) = δl l′ δm m′ , (4.10)
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one obtain for the approximate Hartree potential

ṼH(�r)=

NA∑
k=1

Mk∑
j=1

Lj∑
l=0

l∑
m=−l

Qkl
jm

4π

2l + 1
Y m

l (θk, φk)

×


 1

rl
k

rl
k∫

0

r′lkF
j
k (r′k)dr′k +

∞∫
rl
k

1

rl+1
k

r′lkF
j
k (r′k)dr′k


 (4.11)

4.2.2 The least-square-fit of the molecular density

To determine the expansion coefficients qν a least–square–fit to the true density ρ(�r) is

usually made of: ∫
(ρ(�r) − ρ̃(�r))2 d3�r = min (4.12)

Alternatively the minimisation of the difference in the Hartree energy can also be utilised:∫ ∫
(ρ(�r) − ρ̃(�r)) (ρ(�r ′) − ρ̃(�r ′))

|�r − �r ′| d3�r d3�r ′ = min (4.13)

∫ (
ρ(�r) −

∑
ν

qν ϕν(�r)

)2

d3�r = min (4.14)

respectively

∫ ∫ (
ρ(�r) −∑

ν

qν ϕν(�r)

)(
ρ(�r ′) −∑

ν

qν ϕν(�r
′)
)

|�r − �r ′| d3�r d3�r ′ = min (4.15)

The variation of (4.14) and (4.15) relations is made by the use of the Lagrange multipliers,

with the supplementary conditions of multipole moment conservation. Thus one have

the conservation of the monopol (charge)∑
ν

qν

∫
ϕν d3�r = Q ,

dipole moment �d∑
ν

qν

∫
xϕν d3�r = dx

∑
ν

qν

∫
y ϕν d3�r = dy

∑
ν

qν

∫
z ϕν d3�r = dz

and quadrupole moment Dij∑
ν

qν

∫
x2 ϕν d3�r = Dxx

∑
ν

qν

∫
x y ϕν d3�r = Dxy

∑
ν

qν

∫
y2 ϕν d3�r = Dyy

∑
ν

qν

∫
(xz + yz) ϕν d3�r = Dxz + Dyz

∑
ν

qν

∫
z2 ϕν d3�r = Dzz (4.16)

A x = b , (4.17)
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4.3 Frozen-Core Approximation

In the last two decades the development in the computer industry follows Moore’s Law:

both the amount of memory and the speed of a CPU (Central Processor Unit) are

doubled every 1.5 years. Due to this development it is possible nowadays to calculate

big systems with several hundreds of light atoms or systems with up to 100 heavy or

very heavy atoms. However even on fast computers such calculations take weeks and

months.

The requirement on the CPU time and memory for solving the Kohn-Sham equations

3.25 grows with the square of the number of atomic basis functions. For heavy elements

this number grows very rapidly due to the large number of electrons in such atoms. On

the other hand if one is only interested on chemical properties the inner-shell electrons

do not contribute to the chemical binding. This means that these orbitals can be kept

fixed (frozen) during the solution of the Kohn-Sham equations. This approximation is

called the frozen–core approximation. It allows to keep the number of valence molecular

orbitals small which drastically, at least for heavy systems, reduces the calculation time.

4.3.1 Molecular orbitals in frozen-core approximation

In section 4.1 we discussed the MO-LCAO method and saw which advantages the SO-

representation of the overlap- and Fock-matrix has. In order to keep these very important

properties we have in general not to freeze the atomic orbitals but the symmetry orbitals

which are of course only linear combinations of the last ones. We devide the symmetry

orbitals of each symmetry block in two parts: the core part ψc with orthonormal SO’s1

and the valence part ψv to which all other SO’s belong. The overlap matrix reads

S =

(
Scc Scv

Svc Svv

)
. (4.18)

In order to eliminate the core parts in the valence part of the Hilbert-space we orthogo-

nalize the valence orbitals to the core orbitals and get new valence SO’s

ψv = ψ̃v − SvcS
−1
cc ψ̃c (4.19)

In this new basis the overlap matrix has the form

S =

(
1 0

0 Svv

)
. (4.20)

and the Fock-matrix can be written in the form

H =

(
Hcc 0

0 0

)
+

(
0 0

0 Hvv

)
+

(
0 Hcv

Hvc Hvv

)
. (4.21)

1Atomic orbitals of any atom are already orthonormal to each other. The orthonormality of all frozen
core SO’s means that core orbitals of different atoms do not overlap.
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The last part of the Fock-matrix (off-diagonal elements) is due to an appropriate choice

of the core orbitals quite small and can be neglected. In this case the secular equation

for each symmetry block splits up in two sub-systems. The sub-system describing the

core part is very simple and can be very easy calculated. On the other hand if one is

interested only on bond length and bond distances then this can be neglected; however

it can even be larger than the valence part.

4.3.2 Calculation of the total energy in frozen-core

approximation

We saw above that the molecular orbitals in the frozen-core approximation can be written

in the form

ψi =




ψc
i = χi ≡

NA∑
K=1

Nc
K∑

µ=1

dK
µiϕ

K
µ i = 1, ..., M c ,

ψv
i = ψ̃v − SvcS

−1
cc ψ̃c i = M c + 1, ..., M ′ .

(4.22)

where M c is the total number of frozen SO’s. The electronic density build from these

MO’s has the form

ρ(�r) =
Mc∑
i=1

nc
i χ+

i χi +
M ′∑

i=Mc+1

nv
i (ψv

i )
+ ψv

i ≡ ρc + ρv (4.23)

The atomic basis functions ϕK
µ are solutions of the atomic Kohn-Sham-equation

(
t̂ + K V̂ N + KV̂ C + KV̂ ex

)
ϕK

µ (�ξ) = εK
µ ϕK

µ (�ξ) . (4.24)

If we add and substract to the total energy (3.19) the eigenvalues of the frozen symmetry

orbitals then we can write it in the form

E =
Mc∑
i=1

nc
i


 NA∑

K ′=1

Nc
K′∑

ν=1

NA∑
K=1

Nc
K∑

µ=1

1

2

(
εK ′
ν + εK

µ

)
d∗K ′

iν dK
µi

〈
ϕK ′

ν

∣∣ϕK
µ

〉

+


Mc∑

i=1

nc
i


εi −

NA∑
K ′=1

Nc
K′∑

ν=1

NA∑
K=1

Nc
K∑

µ=1

1

2

(
εK ′
ν + εK

µ

)
d∗K ′

iν dK
µi

〈
ϕK ′

ν

∣∣ϕK
µ

〉



+
M ′∑

i=Mc+1

nv
i εi − 1

2

∫ (
V C

c + V C
v

)
(ρc + ρv) d3�r −

∫
V exρ d3�r + Exc . (4.25)
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This equation can also be written in the form

E =

Mc∑
i=1

nc
i


 NA∑

K ′=1

Nc
K′∑

ν=1

NA∑
K=1

Nc
K∑

µ=1

1

2

(
εK ′
ν + εK

µ

)
d∗K ′

iν dK
µi

〈
ϕK ′

ν

∣∣ϕK
µ

〉
+

∫
V Nρc d3�r +

1

2

∫
V C

c ρc d3�r

−
Mc∑
i=1

nc
i


 NA∑

K ′=1

Nc
K′∑

ν=1

NA∑
K=1

Nc
K∑

µ=1

d∗K ′
iν dK

µi

∫
1

2

(
K ′

V̂ N + KV̂ N
)

ϕ+
ν ϕµ d3�r




−
Mc∑
i=1

nc
i


 NA∑

K ′=1

Nc
K′∑

ν=1

NA∑
K=1

Nc
K∑

µ=1

d∗K ′
iν dK

µi

∫
1

2

(
K ′

V̂ C + KV̂ C
)

ϕ+
ν ϕµ d3�r




−
Mc∑
i=1

nc
i


 NA∑

K ′=1

Nc
K′∑

ν=1

NA∑
K=1

Nc
K∑

µ=1

d∗K ′
iν dK

µi

∫
1

2

(
K ′

V̂ ex + K V̂ ex
)

ϕ+
ν ϕµ d3�r




+
M ′∑

i=Mc+1

nv
i εi − 1

2

∫
V C

v ρv d3�r −
∫

V exρv d3�r + Exc . (4.26)

According to our definition of frozen-core SO’s given above the frozen atomic orbitals

are ortho-normal to each other〈
ϕK ′

µ

∣∣∣ϕK
ν

〉
= δµνδK ′K . (4.27)

We introduce the atomic frozen-core densities

ρK
c =

Mc∑
i=1

nc
i

Nc
K∑

µ=1

∣∣dK
iµ

∣∣2ρK
µ =

Nc
K∑

µ=1

nc µ
K ρK

c µ, (4.28)

where nc µ
K are the atomic occupation numbers nc µ

K =
Mc∑
i=1

nc
i

∣∣dK
iµ

∣∣2 . The nuclear potential

V N =
NA∑

K=1

KV N and according to eqn. (4.27) the core density becomes ρc =
NA∑

K=1

ρK
c and

the core Hartree potential takes the form V C
c =

NA∑
K=1

KV C
c . Inserting this equations in

(3.19) we get

E =

NA∑
K=1

Nc
K∑

µ=1

nc µ
K εK

µ +

NA∑
K=1

NA∑
K ′ �=K

∫
KV N ρK ′

c d3�r +
1

2

NA∑
K=1

NA∑
K ′ �=K

∫
KV C

c ρK ′
c d3�r

− 1

2

NA∑
K=1

∫
KV CρK

c d3�r −
NA∑

K=1

∫
KV C

v ρK
c d3�r −

NA∑
K=1

∫
KV exρK

c d3�r

+
M ′∑

i=Mc+1

nv
i εi − 1

2

∫
V C

v ρv d3�r −
∫

V exρv d3�r + Exc . (4.29)

In most cases the internal structure of the frozen-core part in the equation can be ne-

glegted and the atomic cores considered as point charges centered on the nuclei. In this

22



case the core density has the form ρK ′
c (ξK) =

nc
K

4π ξK
δ(ξK − RK + RK ′) . Inserting this

equation in (4.29) we get for the total energy in the frozen-core approximation

E =

NA∑
K=1

Nc
K∑

µ=1

nc µ
K εK

µ −
NA∑

K=1

NA∑
K ′ �=K

ZK nc
K ′

|�RK − �RK ′| +
1

2

NA∑
K=1

NA∑
K ′ �=K

nc
K nc

K ′

|�RK − �RK ′|

− 1

2

NA∑
K=1

∫
KV C

c ρK
c d3�r −

NA∑
K=1

∫
KV C

v ρK
c d3�r −

NA∑
K=1

∫
KV exρK

c d3�r

+

M ′∑
i=Mc+1

nv
i εi − 1

2

∫
V C

v ρv d3�r −
∫

V exρv d3�r + Exc (4.30)

Here nc
K =

Nc
K∑

µ=1

nc µ
K is the frozen-core charge of the atom K.

4.4 Mulliken analyses, DOS and COOP

To analyse the chemical bonding it is convenient to present the molecular electron density

as a sum of the atomic densities of the orbitals j, centred on different atoms. In the

MO–LCAO method, the molecular orbitals are taken as linear combination of atomic

orbitals

ψi =
∑

j

bjiϕj , (4.31)

where j runs over all AO’s. The total electronic density can consequently be expressed

as follows

ρ(�r) =

N∑
i=1

ψ+
i (�r)ψi(�r) =

N∑
i=1

∑
j

∑
k

b∗ijbkiϕ
+
j ϕk (4.32)

The total number of electrons in the system is

∫
ρ(�r)d3�r =

N∑
i=1

∑
j

∑
k

b∗ijbki

∫
ϕ+

j ϕkd
3�r, (4.33)

which gives,

N =
N∑

i=1

N(i) =
N∑

i=1

[∑
j

b∗ij

(
bji +

∑
k �=j

bkiSjk

)]
, (4.34)

where Sjk is the atomic overlap matrix.

The expression in square bracket in the right–hand side of this equation is called in the

literature the net population of the molecular orbital ψi:
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N(i) =
∑

j

b∗ij

(
bji +

∑
k �=j

bkiSjk

)
. (4.35)

The sum runs over all the atomic orbitals, thus the contribution from a given atomic

orbitals ϕj to the MO ψi will be

N(i, j) = b∗ij

(
bji +

∑
k �=j

bkiSjk

)
. (4.36)

The term |bij |2 originates from the atomic orbital ϕj , while the second one,
∑
k �=j

b∗ijbkiSjk,

comes from the overlap between the atomic orbitals j and k. This later quantity, called

overlap population, is associated with interaction, and is connected to the bond order.

According to Mulliken, when two orbitals overlap, the term b∗jbkSjk + b∗kbjSkj is ”demo-

cratic” divided to the AO contribution of ϕj and ϕk. Summation over all MOs provides

the total population of ϕj :

N (j) =
N∑

i=1

N(i, j). (4.37)

The effective transfer of charge from/to the ϕj is given by

q(j) = N0(j) −N (j) (4.38)

where N0(j) is the number of electrons in ϕj in the neutral isolated atom.

The net number of electrons associated with a given atom in the molecule are obtained

by summing over all basis functions jA centred on atom A, and the effective charge of

that atom will be

q(A) = ZA −
∑
jA

q(jA) =
∑
jA

N (j). (4.39)

Another interpretative tool is given by the Density Of States (DOS), defined as the

number of orbitals per unit energy range dN
dε

.

DOS(ε)dε is equal to the number of levels in the energy interval ε and ε + dε. The

above decomposition of the molecular electron density allows to divide up the DOS

among atoms. The integral of these projections up to the Fermi level gives then the

total electron density on a given atom or in a specific orbital (PDOS, Partial Density Of

States).

A bond indicator for a molecule, can be defined on the base of the overlap population

defined above, by summing b∗jbkSjk over all orbitals in the atoms, over all occupied MOs.

This quantity is called COOP, which stands for Cristal Orbital Overlap Population.
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This gives information about the bonding (with positive contribution b∗jbkSjk) and anti-

bonding (negative). The amplitudes in the COOP curves depend on the number of

states in that energy interval, the magnitude of the coupling overlap, and the size of the

coefficients in the MOs.

The DOS and COOP can be seen as differential versions of electronic occupation and

bond order indices in crystal. The integral of DOS to the Fermi level gives the total

number of electrons, and that of the COOP curve gives the total overlap population,

which is connected with the bond order.

4.5 Optimization of the atomic basis functions

Of great importance in molecular calculations is the basis which is used for the expansion

of the molecular orbitals. The basis which we use is an optimised one, that consists of

two parts, a minimal basis set and an extended basis. The former consists of all occupied

four-component wave functions of the neutral atoms. As an example, for Au it contains

the 1s1/2 to 6s1/2 orbitals. The optimisation procedure implies dimer calculations and

implies the next steps:

• The total energy curve for the dimer of the species to be considered is determined

for the minimal basis. In general a clear minimum is observed at a certain distance,

corresponding to the bond length of the molecule.

• Basis functions of the next sub–shell from a calculation of an atom with a certain

degree of ionisation (we use non-integer occupation numbers) are added and the

total energy of the dimer at a fixed internuclear distance (corresponding to the

minimum in the previous step) is recalculated. Next, the total energy of the system

is minimised as function of the degree of ionisation.

• Further, the partial occupation numbers for these two basis sets is fixed and ad-

ditional basis functions of the next sub–shell are optimised in the same way as

before. This procedure is continued until the change in the total energy by further

increase of the number of basis functions is smaller than a chosen value.

The degree of ionisation lies typical in the range from 0 to a few degrees of ionisation [53].

At last the potential energy curve is determined but using the optimised basis. As a

result, the binding energy and the bond length can be compared with the corresponding

experimental values.
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Chapter 5

Adsorption on metal surfaces

In the last years, the methods to calculate of adsorption were intensively developed.

Nowadays, it reaches a level where it is possible to calculate adsorption energies, as well

as the electronic and atomic structure of medium–sized systems with predictive accuracy.

Adsorption phenomena are commonly classified, according to the value of the binding

energy, in two classes:

• the domain of physisorption corresponding to ”small” binding energies,

• and the domain of chemisorption corresponding to ”large” binding or adsorption

energies.

In the first case, the substrate–adsorbate interactions are mainly due to Van der Waals

forces and involve almost no mixing between the orbitals of the adsorbate and the sub-

strate. The adsorption energy is typically less than 0.3 eV per adsorbed particle (6.9

kcal mol−1). For chemisorption systems there is a further classification of the nature

of the binding in: covalent, metallic and ionic. This is based on survey of electronic,

electrical, vibrational, and thermal properties. The adsorption theory can be approached

from three complementary points of view:

• the macroscopic or thermodynamical approach, used to derive relations between

the properties of the system at equilibrium;

• the microscopic approach in which the principles of quantum mechanics are used

to compute various physical quantities describing the substrate–absorbate interac-

tions;

• and the methods of statistical mechanics, which establish the connection between

macroscopic and microscopic quantities and relates the two previous approaches.

In the case which we are interested in this work is the adsorption of the elements of

interest which are studied in a gas-phase thermochromatography column. Models for
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adsorption equilibria of reversible mobile adsorption [54,55] (without any superimposed

chemical reaction) show that the following equation holds:

a · tr · V0

s · Tdep · V
100·A

=

(
R · T0

−∆H0
ads

)
· exp

(−∆H0
ads

R · Tdep

)
· exp

(−∆S0
ads

R

)
, (5.1)

where the parameter a describes the variation of the temperature along the chromatog-

raphy column (approximated to be linear): T = Ts − a · y. The additional parameters s

and tr are the partition coefficient for the solid phase and the retention time, which for

a short-lived radioactive species is calculated as the radioactive lifetime of the nuclide:

tr =
T1/2

ln(2)

or equals the duration of the experiment for a long-lived species.

Thus, the deposition temperature Tdep and the adsorption enthalpy ∆H0
ads of the process

are combined and can be easily determined from each other. This stresses the importance

of our theoretical calculations of the adsorption energy of element 112. The evaluation

of this quantity is used to predict the adsorption temperature in the thermochromato-

graphic column, on the base of relation 5.1

Adsorption of atoms and molecules has been extensively studied using a different theoret-

ical methods. Initially, mainly theoretical approaches applicable to semi-infinite systems

were used. In the last decade the cluster and embedded cluster methods proved their

utility in the treatement of this phenomenon. These releaved that the adsorption is both

a geometric and energetically local phenomenon. It has been found that the strength

of the chemisorption bond is directly related to the width of the energy region of the

substrate local density of states that is probed. This can be understood by considering

the strength of the interaction to be proportional with an overlap term and inversely

proportional to ∆E. The influence of the details of the surface electronic structure to

the chemisorption bond is found to decrease with the ratio of the adsorbate-surface in-

teraction strength to the metal-metal interaction strength. From later work ( [56]) it

has followed that this ratio fluctuates around the value of one, which constitutes the

intermidiate binding limit. In the case of Hg on a Au surface this ratio is below one

therefore we expect that the calculation of the adsorption properties to be sensible to

the local density of states of the clusters which model the surface. The fact that the

details of the surface electronic structure are essential for the chemisorption bond only

on a relativley small scale compared with the overall surface density of states, can be

the reason for the succes of the analysis of the chemisorption phenomenon by means

of the cluster approach. An appealing aspect of this conceptually simple strategy for

tackling such a complicated problem consists in the possibility to use the entire wealth

of methods and interpretative tools of quantum chemistry available in the treatment of

chemisorption.
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5.1 Cluster method

The cluster–model approach has proven very useful for theoretical investigations of local

defects in solids (such as vacancies or adsorption of atoms or molecules). The use of a

this kind of model rests on the assumption that the adsorption is an local phenomenon.

As already mentioned above, treating the surface as a molecule allows an analysis of

the chemical bond by mean of the orbital overlap population. To probe the electronic

interaction one has to look to the occupation of bonding and antibonding orbital frag-

ments, these fragments being conveniently defined as adsorbate and substrate separately

by means of the orbital overlap population. The occupation of binding orbital frag-

ments results in an attractive contribution to chemical bond. On the other side, the

occupation of antibonding orbital fragments results in a bond weakening or a repulsive

interaction. The relative stability of atoms (or molecules) adsorbed in different adsorp-

tion sites depends on both the occupation of bonding orbitals and that of antibonding

orbitals.

It has been shown that the population of bonding orbital fragments tends to favour bond-

ing to high coordination sites (i.e. for our systems in the hollow position). Population

of antibonding orbitals leads to repulsive interactions that tend to become minimized in

low coordination sites (top position). The final preference is controlled by the balance of

these two opposing ”forces”. Bond formation between the adsorbate and cluster tends

to result in a weakening of the substrate metal-metal bonds between atoms to which the

adsorbate coordinate. This may results in a displacement of the metal-subtrate atoms

and a reconstruction of the surface.

Results may converge slowly with cluster size. Several contributing factors can be men-

tioned:

• When one particular surface is modeled, the geometry of the surface-metal atoms

interacting with the adsorbate has to be the same to at least the first coordination

shell. Thus, at a (100) surface of a face centered cubic metal, surface atoms have

eight metal-atom neighbours. Four of them are in the plane and four are located

in the second layer. Clusters modelling chemisorption atop such a surface atom in

a (100) surface should include at least these eight metal-atom neighbours.

• There is another difficulty that arises, even when the first coordination shell of

the surface-metal atom is fully included in the cluster model. On a real surface,

the surface metal atoms have a lower number of neighbours than bulk atoms do.

However, in the nine atoms metal cluster mentioned above, the central atom has

eight neighbours, but these neighbour atoms share only four or five neighbour

atoms amongst themselves. These reversal from the real surface situation leads to

significantly different electron-distribution relative to that of a true surface atom.

• Another deficiency of this method is given by the discrete substrate density of

states, due to the finite number of atoms included in the cluster model. Therefore,
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Figure 5.1: The total density of states for a Au14 cluster (black line) and the correspond-

ing 5d (grey line) and 6s (dashed line) differential density of states. The Fermi level,

situated at -5.3 eV, is indicated along the energy axis.

one important requirement is that the number of atoms included in the cluster

should be big enough to ensure bands formation. The large number of d-aotmic

levels in a cluster results rapidly in a d-molecular orbital valence electron band,

with very small orbital energy differences resembling the continuum of the bulk

d-valence electron density. The situation is different for the molecular orbitals of

predominantly s−p character since there are fewer s−p states, which additionally

are more spread in energy. For these, the convergence to a continuous bulk valence

band is slow. Figure 5.1 shows the total DOS of a Au14(9,5,1) cluster, together

with the 5d and 6s projected density of states.

5.2 Cluster-Embedding method

In section 5.1 the cluster method was presented. There it was shown that this method

works quit well for describing adsorbtion phenomena. However the disadvantage of

this method is the big number of atoms which should be included in such calculations.

This makes this method often inapplicable. To avoid this kind of problems a so called

Cluster-embedding method was developed [57] in our group. It was applied to several

systems [57, 58] and gives reasonable results.

Lets consider a system with N nuclei and M electrons. The total energy of this system
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(3.19) is

E =

M∑
i=1

ni

〈
ψi

∣∣ t̂
∣∣ψi

〉
+

∫
V Nρ d3 �r +

1

2

∫
V Hρ d3 �r + Exc[ρ] +

1

2

N∑
K=1

N∑
K ′ �=K

ZK ′ ZK

|�RK ′ − �RK |(5.2)

where the density

ρ(�r) =
M∑
i=1

ni ψ̃
+
i (�r)ψ̃i(�r) (5.3)

is build from the solutions of the Kohn-Sham equation

(
t̂ + V̂ N + V̂ H + V̂ xc

)
ψ̃i(�r) = εiψ̃i(�r). (5.4)

There are the equations (3.19), (3.21) and (3.25) without taking in the account the

magnetic density contribution. Here ni are the occupation numbers of the MO’s. We

divide this system in two parts which we will call cluster and environment. The cluster

contains NCl nuclei and MCl electrons the rest of the nuclei NEnv = N − NCl and

MEnv = M − MCl electrons belong to the environment. Now we have to divide the

density of the system in two parts. It is clear that we cannot do this using the solutions

of the Kohn-Sham equation (5.4) because the are strongly de-localized. Fortunately it

can be shown that there exists a set of orthonormal functions ψi which allows us to do

this derivation.

The density in this basis has the form

ρ ≡
M∑
i=1

ni ψ̃
+
i (�r)ψ̃i(�r) =

MCl∑
i=1

nCl
i ψCl

i

+
(�r)ψCl

i (�r) +

M∑
i=MCl+1

ni ψ
Cl
i

+
(�r)ψCl

i (�r) ≡

≡ ρCl + ρEnv (5.5)

Inserting this equation in (5.2) leads to

Etot =
MCl∑
i=1

nCl
i

〈
ψCl

i

∣∣ t̂
∣∣ψCl

i

〉
+

∫
V NρCl d3 �r +

1

2

∫
V CρCl d3�r + Exc +

1

2

NCl∑
K=1

NCl∑
K ′ �=K

ZK ′ ZK

|�RK ′− �RK |

+
MEnv∑
i=1

nEnv
i

〈
ψEnv

i

∣∣ t̂
∣∣ψEnv

i

〉
+

∫
V NρEnv d3 �r +

1

2

∫
V CρEnv d3�r +

1

2

NEnv∑
K=1

NEnv∑
K ′ �=K

ZK ′ ZK

|�RK ′− �RK |

+

NCl∑
K=1

NEnv∑
K ′=1

ZK ′ ZK

|�RK ′− �RK | (5.6)

The Hartree energy is linear in the density and can be written in the form

V C ≡ V C(ρ) = V C(ρCl) + V C(ρEnv) ≡ V C
Cl + V C

Env . (5.7)

30



Inserting this equation in (5.6) leads to

Etot =

MCl∑
i=1

nCl
i

〈
ψCl

i

∣∣ t̂
∣∣ψCl

i

〉
+

∫
V NρCl d3 �r +

1

2

∫
V C

Cl ρCl d3�r +Exc+
1

2

NCl∑
K=1

NCl∑
K ′ �=K

ZK ′ ZK

|�RK ′− �RK |

+

MEnv∑
i=1

nEnv
i

〈
ψEnv

i

∣∣ t̂
∣∣ψEnv

i

〉
+

∫
V N

Envρ
Env d3 �r +

1

2

∫
V C

Env ρEnv d3�r +
1

2

NEnv∑
K=1

NEnv∑
K ′ �=K

ZK ′ ZK

|�RK ′− �RK|

+

∫
V N

Clρ
Env d3 �r −

∫
V C

Clρ
Env d3�r +

NCl∑
K=1

NEnv∑
K ′=1

ZK ′ ZK

|�RK ′− �RK|
(5.8)

In order to derive an equation for the cluster orbitals we hold in the total energy func-

tional (5.8) the environment orbitals fixed and vary the cluster orbitals only. This pro-

cedure leads to the Kohn-Sham equation in the cluster embedding method(
t̂ + V̂ N

Cl + V̂ C
Cl + V̂ xc(ρ) + V̂ Ext

)
ψCl

i (�r) = εCl
i ψCl

i (�r). (5.9)

where V̂ Ext = V̂ N
Env+V̂ C

Env is the external potential. This equation contains one additional

term V Ext in comparison to a similar equation in cluster method (3.17). A further

difference is the exchange-correlation potential which depends not only from the density

in the cluster but from the total density. These two terms contain the whole information

about the environment. The total energy can thus be written as

Etot =
MCl∑
i=1

nCl
i

〈
ψi

∣∣ t̂
∣∣ψi

〉
+

∫
V N

Clρ
Cl d3 �r +

1

2

∫
V C

Cl ρCl d3�r +Exc(ρ)+
1

2

NCl∑
K=1

NCl∑
K ′ �=K

ZK ′ ZK

|�RK ′− �RK|

−
∫

V C
Clρ

Env d3�r +
NCl∑
K=1

NEnv∑
K ′=1

ZK ′ ZK

|�RK ′ − �RK | + EEnv (5.10)

where

EEnv =
MEnv∑
i=1

nEnv
i < ψi|t̂|ψi > +

∫
V N ρEnv d3�r +

∫
V xc ρEnv d3�r

−1

2

∫
V C

Env ρEnv d3�r +
1

2

NEnv∑
K=1

NEnv∑
K ′ �=K

ZK ′ ZK

|�RK ′ − �RK | +
NCl∑
K=1

NEnv∑
K ′=1

ZK ′ ZK

|�RK ′ − �RK | (5.11)

depends only on the density distribution in the environment.

5.2.1 Exchange-correlation energy in cluster embedding method

The equation (5.9) is not applicable for practical calculation because the exchange-

correlation potential still depends on the total density of a molecular system. Due to the

non-linearity of the xc-potential and xc-energy a simple deviation of the total density

is not possible. Therefore we extended our model described in the previous section. A

scheme of this model is presented in figure (5.2).
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Figure 5.2: The system is divided in three parts which are treated differently: cluster,

trans–environment and exterior–environment .

There we use the fact that if the wave functions of two electrons do not overlap then

the exchange-correlation energy for these electrons is zero. We divide the environment

in two parts: exterior- and trans-environment. The transitional–environment is chosen

in such a way that wave functions from cluster and exterior environment do not overlap.

We can now write the total environment density in the form

ρEnv = ρE + ρT (5.12)

The exchange-corelation potential in the equation (5.9) can be approximated by

V xc ≡ V xc(ρCl + ρE + ρT ) = V xc(ρCl + ρT ) ≡ V xc
Cl (5.13)

and the exchange-correlation energy by Exc(ρ) = Exc(ρCl + ρT ).

5.2.2 Choice of the environment density

In section 4.2.1 has been shown that the density of a molecular system can very well be

approximated by a sum of multipole one-center densities

ρ(�r) =

NA∑
K=1

MK∑
j=1

Lj∑
l=0

l∑
m=−l

QKl
jm F j

K(ξK)Y m
l (θK , φK) ≡

∑
ν

qν ϕν . (5.14)

We use in our calculations this expansion to approximate the density of the environment

where we have however in general too many free parameters: all expansion coefficient qν .

From charge conservation law follows that the sum of the monopole occupation numbers

should give the number of electrons NEnv in the environment. On the other hand inside

a solid the micro charge balance should be valid and therefore the electronic charge of

each atom in the solid should be equal to their nuclear charge. And indeed our experi-

ence shows that occupation numbers for quasi neutral atoms used for the environment

lead to a better agreement with experiment. One example are the occupation num-

bers of free atoms. One other example are average occupation numbers from a cluster
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calculation. The third possibility are average occupation numbers from a cluster em-

bedding calculation. In this case one a cluster is embedded in an environment and after

each SCF-iteration one takes the average occupation numbers of the cluster atoms for

the environment. Occupation numbers obtained in such a way deliver best ’solid state’

occupation numbers of an atom.

In this case the energy EEnv is not constant anymore and should be calculated at each

SCF-iteration. Due to this fact we have to extend equation (5.11) to this case. In general

there a four possible types of occupation numbers for the environment

1. Atoms with constant occupation numbers qEK
ic which belong to exterior environ-

ment

2. Atoms with variable occupation numbers qEK
iv which belong to exterior environment

3. Atoms with constant occupation numbers qTK
ic which belong to trans-environment

4. Atoms with variable occupation numbers qTK
iv which belong to trans-environment

The environment density has the form

ρEnv = ρE
c + ρE

v + ρT
c + ρT

v (5.15)

Inserting this equation in (5.11) leads to

EEnv =

NE
c∑

K=1

ME
c∑

i=1

qEK
ic < φi|t̂|φi > +

NE
v∑

K=1

ME
v∑

i=1

qEK
iv < φi|t̂|φi >

+

NT
c∑

K=1

MT
c∑

i=1

qTK
ic < φi|t̂|φi > +

NT
v∑

K=1

MT
v∑

i=1

qTK
iv < φi|t̂|φi >

+

∫
V N

Cl (ρS
c + ρE

v ) d3�r +

∫
V N

Cl (ρR
c + ρT

v ) d3�r

+

∫
V Ext (ρS

c + ρE
v ) d3�r +

∫
V Ext (ρR

c + ρT
v ) d3�r

− 1

2

∫
V C

Env (ρE
c + ρE

v ) d3�r − 1

2

∫
V C

Env (ρT
c + ρT

v ) d3�r

+
1

2

NEnv∑
K=1

NEnv∑
K ′ �=K

ZK ′ ZK

|�RK ′ − �RK | +

NCl∑
K=1

NEnv∑
K ′=1

ZK ′ ZK

|�RK ′ − �RK | .

In order to be able to calculate the interaction energy between the cluster and environ-

ment some additional integration points are required explicitely in the exterior part of

the environment. However there are extra points needed in the trans-environment be-

cause the contribution from these regions are constant and do not contribute for example

to the binding energy of an ad-atom.

But we can make some estimations for this constant contributions if we approximate all

atomic densities in the trans environment to be point-charges:
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ρTK
µ (ξK) =

qTK
µ

4π ξK
δ(ξK − TK + TK ′) where µ = c, v. Inserting this in the expression of the

EEnv leads to

EEnv =

NE
c∑

K=1

ME
c∑

i=1

qEK
ic < φi|t̂|φi > +

NT
c∑

K=1

MT
c∑
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+
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v∑

K=1

ME
v∑

i=1
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v∑
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+

∫
V N

Cl (ρE
c + ρE

v ) d3�r +

∫
V Ext (ρE

c + ρE
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2

∫
V C

Env (ρE
c + ρE

v ) d3�r

+ EN
c + EN

v + EE
c + EE

v +
1

2
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|�RK ′ − �RK | +
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where

EN
µ =

NR
µ∑

K ′=1

NCl∑
K=1

{
qTK′
µ

KV N
Cl (

�RK ′) |�RK ′ − �RK | > ε∫
ρTK′

µ
KV N

Cl d3�r |�RK ′ − �RK | < ε
(5.16)

and

EE
µ =

NR
µ∑

K ′=1

NEnv
µ∑

K=1




qRK ′
µ

(
KV N

Env(
�R′

K) − 1
2

KV C
Env(

�R′
K)
)

|�RK ′ − �RK | > ε∫
ρTK′

µ

(
KV N

Env(
�RK) − 1

2
KV C

Env(
�RK)

)
d3�r |�RK ′ − �RK | < ε .
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Chapter 6

Atomic properties

The detailed calculations of the electronic-ground states of the atoms represents the first

step towards predicting the chemical and physical properties of super heavy elements.

When one compares these properties for two elements in the same chemical group, which

often have the same outer electronic structure, one finds some differences due to the

differences in sizes, ionisation potentials, energies and radial distributions of the wave

functions between analogues shells. Slater [59] showed that the size of the atom or ion

is strongly correlated with the principal maximum of the outermost electronic shell, and

hence giving a first estimate of this important magnitude. Sometimes the expectation

value of 〈r〉 of the outermost shell (which roughly agrees with the principal maximum)

is used as the radius, but the agreement with the experiment is not so good.

For the heavy and super heavy elements the increased number of shells and the decrease

of the binding energy of the outer electrons lead to a competition between shells. As a

consequence, the inner electrons will play also an important role. The relativistic effects

become now important and the coupling between the electrons changes from LS to JJ

coupling.

The relativistic effects on atomic orbitals can be classified in:

• the spin–orbit (SO) splitting of the levels with l 	= 0 (p, d, f . . . electrons) into

j = l ± 1/2.

• a direct relativistic contraction and stabilisation of the ns and p1/2 orbitals,

• an indirect relativistic expansion of outer d and f orbitals

The SO splitting originates in the inner region in the vicinity of the nucleus. For a given

l, the SO splitting decreases with increasing the number of sub-shells, i.e., it is much

stronger for inner (core) shells than for outer shells (see table 6.1). For a given principal

quantum number, the SO splitting decreases with increasing l, i.e. the np1/2 − np3/2

splitting is larger than nd3/2 − nd5/2, which is in turn larger than the nf5/2 − nf7/2, as

is evident from table 6.1 and figure 6.1. In transactinide compounds SO coupling leads

to splittings comparable with (or even larger than) the typical bond energies. The SO

splitting for the 6d valence electrons for element 112 is 3.18 eV in comparison with the

corresponding value of 1.84 eV for the 5d valence electrons.
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Figure 6.1: Relativistic (DF) and nonrelativistic (HF) energy levels of the valence elec-

trons of Au, Hg and element 112.

Initially it had been assumed that the direct relativistic effect, i.e. the contraction and

stabilisation of s and p1/2 orbitals, are important only for ”fast” electrons in inner core

shells of heavy atoms. However, actual relativistic calculations [60] showed that this

effect is still large for the outer valence AO of s and p type. In general, the relative

relativistic correction ∆aµ of a property a of atomic orbital µ is given by:

δaµ 
 ca
l,j

(
Z

c

)2

(6.1)

where Z is the unshielded nuclear charge [61]. In several cases ca
l,j is even somewhat

larger for valence orbitals than for core orbitals, this effect being maximal in the 6th row

on Au and in the 7th row on element 112 (the so–called gold maximum and group 12

maximum, respectively).

The direct relativistic effects for a valence orbital smoothly increases along a peri-

odic row. Tables 6.2 and 6.3 show the relativistic contractions of the ns and np1/2

orbitals for Hg and element 112. The relative relativistic contraction ∆ < r >=

(< r >nr − < r >rel) / < r >nr of the ns orbital is 14.1 for Au, 12.4 for Hg and 27.1 for

element 112, see figure 6.2 and tables 6.2 and 6.3. For element 112 one see that for the 6s

orbital < r >nr= 1.16 a.u. and < r >rel= 0.93 a.u., and for the 7s orbital < r >nr= 3.36

a.u. and < r >rel= 2.45 a.u. Thus the relativistic orbital contraction is much larger

for the 7s orbital compared to the 6s orbital. The relative relativistic contraction of the

valence 6s of Hg is bigger than that of the 6s of element 112, and smaller than that for
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Figure 6.2: Relativistic and non–relativistic radial distribution of the ns valence electrons

in Au, Hg and element 112

the 7s of 112. Both np1/2 and np3/2 orbitals of the elements discussed above contract

relativistically.

For the indirect relativistic effect, an important role is played by the region between the

innermost and outermost shells. The effect of the relativistic contraction of the s and

p core orbitals is the increase in the Coulomb repulsion on the valence electrons. The

s and p valence orbitals have their main maximum well outside the core and therefore,

the effect of the outer core on them is not so strong. These orbitals, however, penetrate

in the inner core and, as a consequence, they experience weak destabilising effects from

the innermost shell.

The d and f AO will experience a strong indirect destabilisation (and expansion) from

the relativistic contraction of the outer s, p core orbitals which have a similar extent.

Furthermore, the relativistically expanded d and f orbitals will stabilise the penetrating

s, p valence orbitals. From these reasonings one can conclude:

• the d and especially f orbitals are in general significantly destabilised;

• the occupation of the inner s, p, d and f orbitals determines if the indirect desta-

bilisation predominates for s and p valence AO or weather it is compensated (or

even over-compensated) by indirect stabilisation.

These considerations clarify the the very large relativistic stabilisation of the 6s and 7s

orbitals in Au and element 112 respectively. Thus for element 112 as well as element 111

the electronic configuration is dqs2 whereas it changes from Au (d10s1) to Hg (d10s2).
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Table 6.1: The relativistic spin-orbit splitting for Au, Hg and element 112 neutral atoms.

the SO splitting [eV]

Au Hg Element 112

2p1/2 − 2p3/2 1811.2 1921.54 10686.7

3p1/2 − 3p3/2 400.10 426.08 2589.74

3d3/2 − 3d5/2 86.49 91.83 443.19

4p1/2 − 4p3/2 96.24 103.19 738.40

4d3/2 − 4d5/2 18.02 19.34 119.29

4f5/2 − 4f7/2 3.81 4.19 35.24

5p1/2 − 5p3/2 16.51 18.29 212.275

5d3/2 − 5d5/2 1.53 1.84 30.02

5f5/2 − 5f7/2 6.31

6p1/2 − 6p3/2 43.69

6d3/2 − 6d5/2 3.18

Here the nd shells become fully populated and the indirect stabilisation of the valence

s, p orbitals achieves its maximum.

As one can see in the tables 6.3 and 6.2 the 6p1/2 and 6p3/2 of 112 are stronger contracted

than the 5p1/2 and 5p3/2 of Hg, whereas the 5f5/2 and 5f7/2 of 112 are stronger expanded

and destabilised in comparison to the 4f5/2 and 4f7/2 of Hg.

Table 6.2: The nonrelativistic and relativistic radii of the principal maximum rmax and

of the expectation values 〈r〉 for the valence orbitals of Hg.

nonrelativistic relativistic ∆〈r〉
orbital rmax

nr [a.u.] 〈r〉nr [a.u.] orbital rmax
rel [a.u.] 〈r〉rel [a .u.] [%]

4f 0.36 0.47 4f5/2 0.36 0.48 –2.1

4f7/2 0.37 0.49 –4.2

5s 0.91 0.99 5s1/2 0.82 0.90 9

5p 0.97 1.08 5p1/2 0.88 0.97 10.2

5p3/2 0.95 1.07 0.9

5d 1.15 1.46 5d3/2 1.15 1.46 0.02

5d5/2 1.17 1.53 –4.9

6s 2.52 3.07 6s1/2 2.23 2.69 12.4

The effect is so strong that the 6p1/2 energy level is situated below the 5f levels for the

SHE. Because of the large relativistic 7s contraction and the relativistic 6d expansion,

the 7s electrons are more strongly bound than the 6d5/2 electrons.

For the same reason the ground–state configuration for the positively charged species

112+ and 112+2 are 6d97s2 and 6d87s2, respectively [62]. As a result one expects large
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Table 6.3: The nonrelativistic and relativistic radii of the principal maximum rmax and

of the expectation values 〈r〉 for the valence orbitals of element 112.

nonrelativistic relativistic ∆〈r〉
orbital rmax

nr [a.u.] 〈r〉nr [a.u.] orbital rmax
rel [a.u.] 〈r〉rel [a .u.] [%]

5f 0.60 0.68 5f5/2 0.62 0.70 –2.9

5f7/2 0.62 0.72 –5.9

6s 1.07 1.16 6s1/2 0.87 0.93 19.8

6p 1.15 1.26 6p1/2 0.93 1.00 20.6

6p3/2 1.12 1.23 2.4

6d 1.38 1.16 6d3/2 1.35 1.67 –43.9

6d5/2 1.44 1.83 –57.8

7s 2.81 3.36 7s1/2 2.08 2.45 27.1

contributions from 6d involving in the chemical bonding for element 112. In the case of

Hg the relativistic 6s contraction is not enough to change the order of the valence levels in

the neutral atom. This is also reflected in the fact that the ground state configuration for

the positively charged species Hg+ and Hg2+ are 5d106s1 and 5d10. From these reasoning

we expect that both the 6s and 5d electrons will participate to the binding.

To be complete one should mention here that the quantum electrodynamic effects (QED)

are very important in accurate calculations of X–ray spectra, for highly charged few

electron atoms. In the case of neutral atom, the effects are less than 1%, and therefore

are not of interest in our calculations.
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Chapter 7

Diatomic calculations

One important step in performing molecular calculations consists in the optimization of

the basis, described in Section 4.5. First the procedure is applied to the Au atoms, since

they are constituting the cluster which simulate the surface.

As starting point we consider the dimer Au2. The first choice is the minimal basis set

for the expansion of the MO. These are the 4-component wave functions corresponding

to all the occupied states in the neutral atom. The total energy of the Au2 molecule is

determined as function of the internuclear distance. A clear minimum is obtained for a

certain distance, defining the bond length of the molecule. It was found that the total

energy has a minimum of -1033972.3946 eV at an internuclear distance of 4.82 a.u. One

should mention that during the optimization procedure the RLDA value of the total

energy is considered.

Two kinds of optimization procedures were applied for all the atoms involved, giving two

different types of basis sets, which we will call A and B.

Type A

In this case a basis set is construct as follows:

• the 1s1/2 to 5p3/2 Dirac 4–component spinors obtained by solving the Kohn-Sham

equation for the neutral atom,

• the valence 5d3/2, 5d5/2 and 6s1/2 orbitals obtained by solving the same equation,

but for the ionized atoms.

The total energy of the Au2 molecule is again calculated, keeping the internuclear dis-

tance equal to 4.8 a.u., for different degrees of ionization. The corresponding potential

energy curve is plotted in figure 7.1 (the small curve in the top left-hand side of the

figure), and it presents a minimum (-1033972.4209 eV) for an degree of ionization equal

to 0.29. One mention that this values for the ionization of the atom have nothing to do

with a real system, but the aim is to produce wave functions with a smaller radius of

the principal maximum than that corresponding to the neutral atom.

Further on, to this basis are added the 6p1/2 and 6p3/2 wave functions, obtained again

from atomic calculations for the ionized atom. The total energy of the dimer for this

extended basis is shown by dots in figure 7.1 and a minimum is found (-1033972.6555
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Figure 7.1: The total energy of the Au2 dimer when different basis functions are used.

eV) for a degree of ionization of +2.5. In a similar way, the 5f5/2 and 5f7/2 functions

are added (the dashed curve) with an degree of ionization of +4.5, the corresponding

minimum of total energy being -1033972.7451 eV. The reason for adding the 5f functions

instead of 6d, was that the former produced a bigger change in the total energy than the

later one. The optimization procedure was stopped in this point since we are limited in

the number of wave functions contained in our basis, due to the required memory which

is proportional to N2, where N represents the number of functions in the basis set used

for the MO–LCAO expansion.

Using this optimized basis, the potential energy curve of the dimer is again determined

and its minimum is found to be at 4.67 a.u., which differs slightly from the experimental

value (Re = 4.67 a.u., De = 2.29 + −0.02 eV [63]). The corresponding RLDA binding

energy is found to be 3.15 eV, and the GGA (with B88 for exchange and Perdew 86 for

correlation) value 2.61 eV. The differences to the above experimental values are due to

the fact that in the case of the Au2 the spin–polarized collinear (SP) and the the spin–

polarized non–collinear (SP,non) (described in 3.4) calculation should be performed, as

shown by Anton et al. [64] The total energy of the dimer calculated by the three methods

is essentially the same, since the molecule has no open spins and therefore it behaves

around the minimum of the potential energy curve as a closed shell system. The mean

difference in bond energy comes from the atomic calculations for the open shell system

of the Au atom.

It is worth noting that generally the GGA bond length is larger than the RLDA value
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(in our case 4.8 a.u). Therefore the geometry of the system is better described by the

RLDA values, while the binding energy by the GGA value.

Type B

The second type of basis contains the entire minimal basis as starting point. Keeping

fixed the interatomic distance to the value of 4.8 a.u., the 6p and 5f functions (from

ionized atoms) are added (forming Basis No. 2 in table 7.1) with a degree of ionization

of 4.0. The RLDA bonding energy for this type of basis is -3.07 eV with a bond length

of 4.7 a.u., and the GGA value is -2.55 eV for an internuclear distance of 4.8 a.u. One

has a difference of 0.06 eV in the binding energy corresponding to the two types of basis.

Basis B, although somewhat weaker bound, has the advantage that it allows an analysis

of the density of states and overlap populations in molecules.

Table 7.1: Total energy (RLDA) for the Au2 dimer, for minimal and optimized basis

(type B), and the degree of ionization for the optimized atomic basis functions.

Basis Basis functions (type B) Degree of ionization Total energy [a.u.]

1 1s1/2 to 6s1/2 –1033972.4208

2 Basis No. 1 + 6p1/2,6p3/2 +4.0 –1033972.5701

3 Basis No. 2 + 5f5/2,5f7/2 +4.0 –1033972.6703

Table 7.2: Total energy (RLDA) for the HgAu dimer, for minimal and optimized basis,

and the degree of ionization for the optimized atomic basis functions.

Basis Basis functions Degree of ionization Total energy [eV]

Type A

1 1s1/2 to 5p3/2 neutral + 5d-6s ionized +0.2 –1050625.2228

2 Basis No. 1 + 6p1/2,6p3/2 +1.0 –1050625.8313

3 Basis No. 2 + 5f5/2,5f7/2 +4.0 –1050625.8914

Type B

1 1s1/2 to 6s1/2 neutral –1050625.2449

2 Basis No. 1 + 6p1/2,6p3/2 +1.5 –1050625.8234

3 Basis No. 2 + 5f5/2,5f7/2 +4.0 –1050625.8715

4 Basis No. 3 + 6d3/2,6d5/2 +4.0 –1050625.8921

5 Basis No. 4 + 5g7/2,5g9/2 +6.0 –1050625.9072

6 Basis No. 5 + 6f5/2,6f7/2 +5.5 –1050625.9144

In the next step we performed in a similar way the optimization for the dimers HgAu

and 112Au, using the previous by optimized sets for Au. We start with the minimal

basis for Hg and 112 respectively. The optimization procedure for the two types of basis

is pointed in tables 7.2 and 7.3.
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Table 7.3: Total energy (RLDA) for the 112Au dimer, for minimal and optimized basis,

and the degree of ionization for the optimized atomic basis functions.

Basis Basis functions Degree of ionization Total energy [eV]

Type A

1 1s1/2 to 6p3/2 neutral + 6d-7s ionized +0.2 –1050625.2228

2 Basis No. 1 + 7p1/2,7p3/2 +0.15 –1805404.9588

3 Basis No. 2 + 6f5/2,5f7/2 +0.9 –1805405.7101

4 Basis No. 3 + 5g7/2,5g9/2 +4.0 –1805405.7928

Type B

1 1s1/2 to 7s1/2 neutral –1805404.7711

2 Basis No. 1 + 7p1/2,7p3/2 +1.0 –1805405.6734

3 Basis No. 2 + 6f5/2,5f7/2 +4.0 –1805405.7467

4 Basis No. 3 + 5g7/2,6d9/2 +6.0 –1805405.7747

5 Basis No. 4 + 7d3/2,7d5/2 +3.5 –1805405.7936

6 Basis No. 5 + 7f5/2,7f7/2 +3.5 –1805405.8036

For further reference, the second type of optimization (type B) is performed till the

achievement of the completeness of the basis sets for Hg and element 112. The calcula-

tions were performed for both types of basis with atomic spinors including up to 5f for

Au and Hg, and up to 6f for element 112, respectively. From tables 7.2 and 7.3 one can

see that one loses (by these limitation of the basis) 0.04 eV for HgAu and 0.06 eV for

112Au in the precision of value of the binding energy.

Table 7.4: Binding energy and bond distance (RLDA) for the AuX dimers (for optimized

basis), with X=Hg, element 112.

System Binding energy [eV] Distance[a.u.]

RLDA GGA RLDA GGA

HgAu –1.03 –0.55 4.92 5.12

HgAu(SP) –1.01 –0.52

HgAu(SP, non) –1.02 –0.53

112Au –0.93 –0.41 4.99 5.20

112Au(SP) –0.89 –0.38

112Au(SP, non) –0.90 –0.39

Figure 7.2 shows how the total energy (RLDA) and the bond distance of the dimer are

influenced by the extension of the basis. The bond length for the minimal basis set is

situated at 6.9 a.u, differing then substantially from the experimental value. The effect

of the optimization of the valence wave functions is a smooth increase in the total energy

of the system and a decrease of the bond length to 5.4 a.u. The main change in both the

total energy and bond length results from the addition of the np atomic wave functions,
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Figure 7.2: Energy potential curves for the dimer 112Au, when different basis are used.

whereas the correction induced by the next nf atomic spinors is only 0.06 eV in the

energy and 0.05 a.u. in the bond length.

To see the effect of the spin–polarized method on the XAu dimer results, calculations were

performed using basis type A. The obtained binding energies shown in table 7.4 reveals

no significant improvement in comparison to the non–SP ones. This is understandable

since in the XAu molecule both Hg and element 112 are closed shell systems, and only

the Au atom has an open spin. Therefore the entire molecule has an open spin, and the

corrections due to the SP (collinear and non–collinear) method are of the same order of

magnitude for both the XAu molecule and for the Au atom system. These results show

that it is not necessary to use the improved method in studying XAun systems, since the

corrections given for the total energy of the system will be canceled by the total energy

of the cluster Aun system.

Figure 7.3 shows the binding energies as a function of the internuclear distances. One

sees in the first picture that the difference E112
b − EHg

b is almost the same for the two

types of basis (A and B) discussed above. In comparison to the GGA (B88 for exchange,

P86 for correlation) values —the second plot— the RLDA values of the binding energy

are 0.44 eV greater. On the right–hand side the energy potential curves for the dimer

Au112, containing the element of interest, are plotted for basis B and for the minimal

basis sets, to illustrate again the effect of the extended basis. The use of the extended

sets results in an increase of the electronic density in the region between the atoms (figure

7.4), corresponding to an increasing of the binding energy.
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Figure 7.3: Potential energy curves for the dimers XAu, with X = Hg, element 112.

The RLDA binding energies for the two types of basis are shown on the left, the GGA

(B88/P86) curves—in the middle. On the right the energy potential curves for the dimer

112Au only, for basis B and minimal basis, for RLDA and GGA.
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Figure 7.4: The difference between the electronic density of a Au112 molecule and the

electronic densities of the neutral isolated atoms localized in the positions of dimer atoms

(ρdimer(�r) − ρAu(�r) − ρ112(�r)); (a) with minimal basis and (b) with the optimized basis

sets type B.
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Chapter 8

Cluster calculations

8.1 Geometry

The ideal Au(100) surface exhibits a 2-dimensional square lattice with a lattice constant

a= 4.08 Å (=7.712 a.u.) chosen according to the bulk fcc phase of Au [65]. A 2 to

5 layer slabs are used to model this surface, designed to describe on-top, bridge and

fourfold adsorption processes. The cluster models are constructed by successive addition

of neighboring shells starting with the atoms that forms the adsorption site.

The clusters will be denoted by Aun(m1,m2,...), where n denotes the total number of

atoms and mi the number of atoms in the i-th crystal layer parallel to the (100) surface,

starting with the surface layer. Individual groups (called blocks in the following tables)

of symmetry-equivalent atoms are labeled as in figures 8.1, 8.2 and 8.3. Both top and

hollow positions have a C4v symmetry, whereas the bridge position has only C2v.

8.2 Unperturbed surface clusters

One price which one have to pay when the surface is modeled by a cluster is given by

the polarization of the cluster in both horizontal and vertical directions. Tables 8.1, 8.2

and 8.3 monitorize this effect by the Mulliken analysis of the cluster–atoms.

Table 8.1: Mulliken charge of the surface-metal atoms of different clusters used in the

study of adsorption on the top position when the cluster method is used.

basis system Bl.1 Bl.2 Bl.3 Bl.4 Bl.5 Bl.6 Bl.7 Bl.8 Bl.9

opt (B) Au9 78.95 79.04 78.96

opt (A) Au13 78.97 79.05 78.96 79.00

min Au14 79.14 79.03 78.91 79.01 79.07

opt (A) Au14 78.99 79.03 78.93 79.03 79.05

opt (B) Au14 79.02 79.03 78.89 79.06 79.09

opt (A) Au34 78.97 79.01 78.94 78.99 79.03 78.99 79.01 79.03 78.91
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Figure 8.1: A sketch of the largest cluster investigated (Au34(13,12,4,5)) for the on-top

site.

Figure 8.2: A sketch of the largest cluster investigated (Au22(12,5,4,1)) for the fourfold

site.
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Figure 8.3: A sketch of the largest cluster investigated (Au16(8,6,2)) for the bridge site.

The smallest clusters which were considered are the Au9(5,4) for the top position and

Au9(4,5) for the hollow position, corresponding to the lowest and the highest coordination

site, respectively. Further on the size of the cluster is increased. Thus for the top

position Au13(9,4), Au14(9,4,1) and Au34(13,12,4,5) clusters are considered. As is evident

from table 8.1 atomic charges are different from zero for both the atoms on the surface

(constituting the first layer) and the atoms in the next layers. When one looks to the

Mulliken charge of the Au atom on top where the ad–atom will coordinate, one sees that

there is a deviation from the neutrality corresponding to a transfer of electronic charge

from and to the neighbour atoms, which for the same type of basis is a function of the

size of the clusters, and for the same cluster (see the analyses for Au14) depends on the

type of basis.

Table 8.2: Mulliken charge of the surface-metal atoms of different clusters used in the

study of adsorption on the hollow position.

basis system Bl.1 Bl.2 Bl.3 Bl.4 Bl.5 Bl.6 Bl.7 Bl.8 Bl.9

opt (A) Au9 78.95 79.04 78.97

opt (B) Au9 78.96 79.04 78.95

opt (A) Au22 79.01 78.94 78.998 79.01 78.99 79.07

opt (A) Au26 78.94 78.95 78.97 79.01 78.97 79.08 79.07

opt (B) Au26 78.92 78.95 78.96 79.01 78.97 78.98 79.13

The hollow position corresponds to the highest coordination order, the adsorbate inter-

acting mainly with four atoms in the first layer of the cluster. Different cluster sizes,
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Figure 8.4: The total density of states for the Au9(5, 4), Au14(9, 4, 1) and

Au34(13, 12, 4, 5) systems (cluster method, on–top position).

varying from the Au9(4,5) system (a small one) up to a Au26(16,5,4,1) system (a medium

one), were considered. One should remark that the Au9(4,5) is reversed compared to

the Au9(5,4) top cluster. One remark that by adding four atoms in the first layer to

the Au22(12,5,4,1) there is a change of about 0.1 in the total charge of the atoms in the

first coordination shell. From this point of view, the convergence relative to the size of

the cluster is not yet achieved for none of the clusters considered. But as it was already

pointed out the increase to bigger clusters is limited nowadays by the capacities of the

computers.

Table 8.3: Mulliken charge of the surface-metal atoms of different clusters used in the

study of adsorption on the bridge position.

basis system Bl.1 Bl.2 Bl.3 Bl.4 Bl.5 Bl.6

opt (A) Au16 78.99 79.02 79.02 78.93 78.99 79.02

In the bridge position the adsorbate interacts mainly with the two central atoms denoted

by 1 in figure 8.3. A Au16(8,6,2) cluster includes the 12 atoms which constitute the second

coordination shell, six in the first layer and the other six in the second one, together with

2 atoms in the third layer [68].

Information about the details of the surface electronic structure may be obtained from

the analysis of density of states (DOS) diagrams. Figure 8.4 displays the total DOS for

the different Aun clusters used in the study of the adsorption on the top position. At first
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Figure 8.5: The differential density of state for the 7s orbital of element 112 in a 112Au14

system (cluster method, on–top position).

one notices that the Au9(5, 4) cluster DOS is very different from that corresponding to

the Au34(13, 12, 4, 5) DOS, which indicates that 9 atoms are not sufficient for modeling

the local electronic structure of a solid. The spectrum for the Au34 system contains one

energy level at -12.81 eV which is separated by a gap of -1.07 eV from the continuum

valence band. The analysis of the expansion coefficients of the corresponding MO reveals

that it extends over the entire cluster and therefore the corresponding peak would lie in

the valence band for a solid.

8.3 Adsorption of element 112 and Hg on the Aun

clusters

When the adsorbate and the surface start to interact, the respective states mix. This

leads to new states which usually have the energy levels broadened and shifted with

respect to the energy levels in the separated systems.

Lets consider the effect of the valence (5d and 6s) band of the Au substrate. The

interaction of the adsorbate and the substrate leads to the hybridization of the adsorbate

wave functions and the states of the substrate s–band yielding a broadening of the

adsorbate levels. Moreover, the atomic levels will shift because the substrate Fermi level

and the electron chemical potential of the atom become aligned. As an example, figure 8.5

displays the splitting of the 7s–AO of element 112 over the valence energy spectra of the

substrate. An analysis of the wave–function character in a such broadened peak evinces

that the low energy part of the peak belongs to states which have an increased electron

density between the adsorbate and the substrate. Such states are called ”bonding” in

contradistinction to the states belonging to the high energy part of the broadened peak

which are called ”anti-bonding” (and having a node between the adsorbate and the

substrate).
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This broadening implies a coupling of the localized electrons of the adsorbate to the

substrate, and therefore a delocalization. The bonding is strongest when bonding states

are occupied and anti-bonding states remain empty.

8.3.1 Adsorption on the top position

The Mulliken analysis presented in Table 8.5 shows that the change of charge between the

adsorbate and surface cluster is very small. Thus there is a transfer of charge of about 0.1

from the cluster to Hg, whereas there is practically not charge transfer between element

112 and the system simulating the surface.

The smallest cluster considered for modeling the adsorption atop of a Au surface–atom

is Au9(5,4), as already pointed out above. Keeping fixed the distance between the Au

atoms, the binding energy of the XAu9 system is calculated as a function of the distance

R between the ad–atom and the surface. The binding energy is then calculated by

subtracting the energy of the cluster Au9 and the energy of the adsorbate at large R.

The obtained potential energy curves are shown in figures 8.6, 8.7 and 8.8, together with

those obtained for larger systems.

The RLDA minima of these curves are found to be -0.6 eV for Hg and -0.67 eV for

element 112, corresponding to a bond length of 5.0 a.u. for HgAu9 and 5.2 a.u. for

112Au9 system, respectively. This actually means an inversion in the relative behaviour

of these elements with respect to the way in which they interact with the other Au

clusters. All other results in table 8.6 and those for the dimers (table 7.4) show that Hg

is stronger bound than element 112. In view to see the basis to this type of computation,

the same method was applied to the XAu9 clusters but for the basis type B, keeping

the distance between the adsorbate and the cluster to the values 5.0 for Hg and 5.2 for

112, i.e. in the position of the minimum of the corresponding potential energy curves.

The results are presented in table 8.4. The third set of values corresponds to the case

in which an extended basis B’ which contains basis B (for the Au atoms), the minimal

basis set for adsorbate and in addition the next optimized spinors for Hg and element

112, as follows:

• 6p(Hg+1.5)+5f(Hg+4.0)+6d(Hg+3.5)+5g(Hg+6.0)+6f(Hg+5.5)

• 7p(112+1.0)+6f(112+4.0)+7d(112+3.5)+5g(112+6.0)+7f(112+5.5).

As it results from Table 8.4, the binding energies are very depending on the basis for

this size of cluster, and when the ”best basis” for the ad–atom is used, the difference

between the two binding energies is almost zero. The reason for this behaviour is that

the size of the cluster is too small. This can be immediately observed by the analysis of

the DOS of the XAu9(5,4) clusters in comparison with the DOS for the Au9(5,4) cluster

which simulates the surface in figure 8.9. It is evident that the electronic distribution

has not yet achieved the band structure which is characteristic to a solid, and the total

DOS of the Au9 system substantially changes by the interaction with the ad–atom.
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Figure 8.6: The potential energy curves (RLDA) for the adsorption of Hg and element

112 on different Au clusters on the on-top position .
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Figure 8.7: The potential energy curves (B88/P86) for the adsorption of Hg and element

112 on different Au clusters on the on-top position .
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Figure 8.8: The potential energy curves (PW91/PW91) for the adsorption of Hg and

element 112 on different Au clusters on the on-top position .
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Table 8.4: Binding energies (RLDA) for the XAu9(5,4) clusters, when different basis sets

are used keeping the distance between the adsorbate and the Au9(5,4) cluster constant.

System Binding energy [eV] R

basis A basis B basis B’ [a.u.]

HgAu9(5,4) -0.60 -.56 -.65 5.0

112Au9(5,4) -0.67 -.60 -.67 5.2

Figure 8.9: The total density of states for Au9, HgAu9 and 112Au9 clusters for the on-top

site.

The addition of four atoms in the first layer in the Au9 cluster, leads to Eb = −0.95 eV

for Hg and Eb = −0.83 eV for element 112, which gives a difference in the binding energy

of −0.12 eV (see table 8.7), comparable to that obtained for the XAu dimers (−0.1 eV

(see table 7.4)). The addition of a Au atom in the third layer, i.e. a surface cluster

Au14(5,4,1), leads to a decrease of both binding energies to the values EHg
b = −0.86

eV and E112
b = −0.75 eV. This is in agreement with the previous cluster calculations

( [66]) which revealed that when the cluster is enlarged in the direction perpendicular

to the surface this results in a decrease in the binding energy. On the contrary, when

the growing is made in the direction parallel to the surface the binding energy becomes

bigger.

For the XAu14 the potential energy curves for the two types of basis were determined.
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Table 8.5: Mulliken charge of the surface-metal atoms and of the ad–atom for different

clusters used in the study of adsorption on the top position.

system basis Ad–atom Bl.1 Bl.2 Bl.3 Bl.4 Bl.5 Bl.6 Bl.7 Bl.8 Bl.9
HgAu9 A 79.87 79.02 79.07 78.96
112Au9 A 112.07 78.98 79.00 78.98
HgAu9 B 79.90 78.97 79.08 78.95
112Au9 B 112.05 78.94 79.04 78.95
HgAu9 B’ 79.97 78.90 79.08 78.95
112Au9 B’ 112.09 78.90 79.04 78.96
HgAu13 A 79.86 78.92 79.05 78.97 79.04
112Au13 A 112.02 78.92 79.04 78.96 79.02
HgAu14 min 79.88 78.17 79.04 78.89 79.02 79.12
112Au14 min 111.95 79.13 79.03 78.90 79.01 79.09
HgAu14 A 79.91 79.01 79.03 78.93 79.04 79.07
112Au14 A 112.02 78.99 79.02 78.93 79.03 79.06
HgAu14 B 79.90 79.01 79.03 78.90 79.06 79.11
112Au14 B 112.03 78.99 79.02 78.90 79.06 79.10
HgAu34 A 79.89 79.02 79.02 78.95 78.99 79.03 79.00 79.01 79.03 78.91
112Au34 A 112.01 78.98 79.01 78.95 78.99 79.03 79.00 79.01 79.03 78.91

Table 8.6: The binding energies and bond length for HgAun and 112Aun on the top

position, for n = 9, 13, 14 and 34, when the cluster method is applied.

System basis RLDA GGA

Energy[eV] R[a.u.] Energy[eV] Energy[eV] R[a.u.]

B88/P86 PW91/PW91

HgAu9 A -.60 5.0 -.10 -0.18 5.3

112Au9 A -.67 5.2 -.15 -0.23 5.5

HgAu13 A -.95 5.0 -.36 -.45 5.2

112Au13 A -.83 5.1 -.28 -.34 5.5

HgAu14 min basis -0.38 5.6 -0.05 -0.12 6.4

112Au14 min basis -0.31 5.9 -0.03 -0.11 6.9

HgAu14 A -.86 5.0 -.27 -.36 5.2

112Au14 A -.75 5.2 -.20 -.29 5.6

HgAu14 B -.85 5.0 -.29 -.37 5.2

112Au14 B -.77 5.2 -.22 -.31 5.6

HgAu34 A -.95 5.1 -.39 -.52 5.2

112Au34 A -.85 5.2 -.25 -.33 5.2
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Table 8.7: The differences (∆Eb = EHg
b −E112

b ) in the binding energies for XAun clusters,

for n = 9, 13, 14 and 34 for the top position and cluster method.

System basis Energy[eV]

RLDA B88/P86 PW91/PW91

XAu9 A .07 .05 0.05

XAu13 A -.12 -.08 -.11

XAu14 min basis -.07 -.02 -.02

XAu14 A -.11 -.07 -.07

XAu14 B -.08 -.07 -.06

XAu34 A -.10 -.14 -.19

Figures 8.6 and 8.7 show that there is no significant difference between basis A and B.

For reference and comparison with the dimer calculations, the potential energy curves for

the same systems where determined in the case in which the basis sets contain only the

atomic orbitals corresponding to the minimal basis. From the dimer calculations it was

evident that such a basis is too poor for leading to reliable results neither for the binding

energy nor for bond length. The aim is to evaluate the way in which the improvement

induced by the optimization of the basis varies from dimers to bigger systems. First of

all on notes a remarkable concordance in the RLDA values for the bond distance, i.e.

the minimum of the binding energy is found to be as follows:

• for the minimal basis at 5.5 a.u for the HgAu dimer and at 5.6 for the HgAu14

system, respectively at 5.9 a.u. for the 112Au dimer and at 5.9 a.u. for the

112Au14 cluster.

• for the optimized basis sets the corresponding values are 4.9 a.u. and 5.0 a.u. for

Hg, and 5.0 a.u. and 5.2 a.u. for element 112.

This outcome indicates that the interaction between the adsorbate and surface cluster is

mainly with the Au atom atop of which the ad–atom is adsorbed. The binding energies

are about 0.6 eV larger for the optimized basis for dimers, and about 0.46 eV larger in

the case of XAu14 systems. These differences have two principle reasons:

• firstly the interaction between the adsorbate atom with the next four substrate

metal atoms in the first layer,

• and secondly, an indirect effect, the interaction between the Au–atom with its

neighbours (mainly with the four nearest atoms in the first layer and the four

neighbours in the second layer).

These results stress again the importance of the quality of the basis used for the expansion

of the molecular orbitals. One improvement which can be done is to enlarge to basis

sets. Since the use of such extension for the Au atoms would lead in a very large increase

in the computation time, it remains only the possibility to keep a reduced basis for the

cluster atoms and to increase the number of functions for the adsorbate only. This was

done as described above for basis type B’. The results in table 8.8 indicate that the effect
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of an enlarged basis consists in a deeper binding energy, but the difference in the binding

energy is practically equal to that obtained for the basis B.

Table 8.8: Binding energies (RLDA) for the XAu14(9,4,1) clusters, when different basis

sets are used keeping the distance between the adsorbate and the Au14(9,4,1) cluster

constant.

System Binding energy [eV] R

basis A basis B basis B’ [a.u.]

HgAu14(9,4,1) -0.86 -.85 -.91 5.0

112Au14(9,4,1) -0.75 -.77 -.85 5.2

More information regarding the details of the chemical bond can be obtained from the

analysis of the differential (or partial) crystal orbital overlap population (PCOOP) dia-

grams for the outer electronic shells of Hg and element 112. Figures 8.11 and 8.12 show

the bonding and anti-bonding components of the occupied (n-1)d3/2, (n-1)d5/2 and ns1/2

valence orbitals as well as those included in the extended basis B’ for Hg and element

112. The analysis refers to the XAu14(9,4,1) clusters, and corresponds to the binding

energies shown in table 8.8. Decisive for the bonding character is the balance between

the occupation of bonding and anti-bonding orbital fragments. Thus the PCOOP for the

unoccupied (n-1)d3/2, (n-1)d5/2 and ns1/2 atomic orbitals are drawn separately in figure

8.10

First one remembers that in element 112, due to the relativistic effects, the 7s1/2 is

strongly contracted and stabilized, being situated between the two 6d levels (closer to

6d3/2). For this reason one expects for the 7s1/2 and 6d3/2 AO to contribute in a similar

way to the bonding. The diagram 8.10 confirms this anticipation showing that both

orbitals contribute to the binding in the lower energy part of the valence band and

occupy anti-bonding fragments in the upper part of it. The bonding part of the PCOOP

spectrum of the 6d5/2 is wider than the corresponding part of the 7s1/2 and 6d3/2, the

occupation of the bonding orbital fragments being maximal in the middle of the valence

band.

In comparison, the relativistic effects in Hg don’t lead to an inversion between 6s1/2 and

5d5/2 levels so that the former one will lie above the later one. Therefore these two AO

have a similar distribution along the energetic spectrum, the occupation of the bonding

orbital fragments being maximal toward the middle of the valence band, and above the

region in which the 5d3/2 contributes in a constructive way to the bonding.

As it already was pointed out, in establishing the character of a certain contribution,

the occupation of anti-bonding orbital fragments is also important. From figures 8.10

one notices that 5d3/2 of Hg and 6d3/2 of element 112 both have bonding parts occupied

and the anti-bonding parts almost occupied, hence they do not contribute practically to
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Figure 8.10: The partial crystal overlap population (PCOOP) of occupied and unoccu-

pied states for the valence orbitals of Hg and element 112 in a XAu14(9,4,1) cluster (basis

B’, cluster method).
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Figure 8.11: The partial crystal overlap population for element Hg in a HgAu14 cluster

for the on-top site, when the basis B’ is used (cluster method).
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Figure 8.12: The partial crystal overlap population for element 112 in a 112Au14 cluster

for the on-top site, when the basis B’ is used (cluster method).
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the binding. The Mulliken analysis gives an effective charge of 3.988 for 5d3/2(Hg) and

3.978 for 6d3/2(element 112), respectively. One notices that the bonding fragments for

(n-1)d5/2 and ns1/2 are not completely occupied, corresponding to a transfer of charge

from these levels to the orbitals which are not occupied in the ground state of a free atom

(the additional np to nf functions). The Mulliken analysis indicates that the transfer

of charge is bigger for 6s1/2 than for 5d5/2 in the case of Hg (the corresponding effective

charges being 1.75 and 5.97, respectively), whereas for element 112 the two most outer

shells are equal deprived of electronic charge (qeff(7s1/2)=1.89 and qeff (6d5/2)=5.90).

Figure 8.13: The partial crystal overlap population (PCOOP) of occupied states for the

additional orbitals in the basis sets of Hg and element 112 in a XAu14(9,4,1) cluster

(basis B’, cluster method).

Figures 8.11 and 8.12 show the proportion to which the additional optimized atomic

functions influence the interaction between the adsorbate and cluster. One notice that

the main contribution to the binding comes from the additional 6p–type functions for

Hg and from 7p–type functions in the case of element 112. However, the way in which

these participate to the binding is quite different: one have a more uniform distribution

for 6p(Hg) than for 7p(element 112), the later one giving a contribution to the over-

lap population mainly on the extremities of the valence band. The next 5f(Hg) and

6f(element 112) behave quite similarly and spread over the entire valence energy band.

One important difference is given by the 5g–type functions which contribute to the over-

lap population for element 112, but weaker in the case of Hg. It is interesting to make
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Figure 8.14: The potential energy curves (RLDA and GGA) for the adsorption of Hg

and element 112 on different Au clusters for the bridge position.

a comparison between the contributions of the optimized basis functions to the COOP

for two different basis sets. This is done in figure 8.10 and one immediately remark that

the main difference appears in the law energy part of the spectrum for both kinds of

ad–atoms.

For the larger clusters XAu34(13,12,4,5) one obtains a RLDA value of -0.95 eV for the

binding energy of Hg and -0.85 eV for element 112, which gives a difference of 0.1 eV

between the values corresponding to these elements. The difference of about 0.2 eV for

the GGA values is due to the fact that it was not calculated the entire potential energy

curves for both elements, and the GGA bond lengths are larger than the RLDA ones.

The analysis of the RLDA energy potential curves (see figure 8.6) gives a bond length

of 5.1 a.u. for Hg, and a value of 5.2 a.u. for element 112.

8.3.2 Adsorption on the bridge position

The bridge position corresponds to an adsorption of the adsorbate on a two–fold site, as

shown in figure 8.3.

The Hg is found to stabilize at a distance of 4.3 a.u relative to the surface, i.e. 5.09

a.u. away from the nearest Au atoms. For element 112 the bond length relative to
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Table 8.9: The total and binding energies for the bridge position, cluster method. (Basis

type A was used.)

System RLDA GGA

Energy[eV] R[a.u.] Energy[eV] Energy[eV] R[a.u.]

B88/P86 PW91/PW91

Au16Hg -1.15 4.3 .01 -0.07 4.5

Au16112 -1.08 4.5 .11 0.02 4.8

the surface is found to be 4.5 a.u., which corresponds to a distance of 5.26 a.u. to the

nearest substrate atoms. These values are again close to that obtained for the dimer

bond lengths and for the top position.

Table 8.9 shows that for the clusters XAu16(8,6,2) the binding energies have the highest

value, namely -1.15 eV for Hg and -1.08 for element 112. This again show a small

difference of 0.07 eV in the binding energies, as follows from the table 8.10. One should

remark that the GGA value are not bound.

Table 8.10: The differences (∆Eb = EHg
b − E112

b ) in the binding energies for the bridge

position, cluster method. (Basis type A was used.)

System Energy[eV]

RLDA B88/P86 PW91/PW91

Au16X -.07 -.10 -0.09

8.3.3 Adsorption on the hollow position

The adsorption on the four–fold site was considered for XAu9(4,5) and XAu22(12,5,4,1)

clusters. The potential energy curves in figure 8.15 show that, by increasing the size of

the cluster, the bond lengths changes 3.5 a.u. to 3.8 a.u. for Hg, and from 3.8 a.u. to

4.0 a.u. for element 112. This corresponds to an enlargement of the distance between

the adsorbate and the nearest substrate atom (denoted by 1 in figure 8.2) from 5.2 a.u.

to 5.41 a.u. for Hg, and from 5.41 a.u. to 5.55 a.u. for element 112.

Moreover, the values on table 8.11 show a different trend in the binding of the two

species, element 112 being stronger bound than Hg. It follows that either the cluster is

too small, and the polarization of the cluster has as consequence a different behaviour of

the system relative a solid either the hollow position is not preferred for the adsorption.

The results obtained for the embedded cluster method suggest that the first one is the

reason for these effect.
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Figure 8.15: The potential energy curves (RLDA) for the adsorption of Hg and element

112 on different Au clusters on the hollow position .

Table 8.11: The total and binding energies for the hollow position, cluster method.

(Basis type A was used.)

System RLDA GGA

Energy[eV] R[a.u.] Energy[eV] Energy[eV] R[a.u.]

B88/P86 PW91/PW91

HgAu9 -1.04 3.5 -.08 -.19 4.5

112Au9 -.99 3.8 -.05 -.16 5.0

HgAu22 -.75 3.8 .32 .18 4.0

112Au22 -.97 4.0 -.17 -.19 5.0

Table 8.12: The differences (∆Eb = EHg
b − E112

b ) in the binding energies for the hollow

position, cluster method. (Basis type A was used.)

System Energy[eV]

RLDA B88/P86 PW91/PW91

Au9X -.05 -.03 -.03

Au22X .22 .49 .37
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Chapter 9

Embedding calculations

The embedded cluster method was described in chapter 5. All three possible adsorption

sites were taken in the account: top, bridge and hollow position. Calculations were

performed for cluster of moderate size in the embedding environment. The biggest

systems considered are shown in figure 9.1.

9.1 Unperturbed surface clusters

At first the Mulliken analysis is done, for both the unperturbed systems and the systems

with adsorbate, the effective electric charge is written down in tables 9.1 and 9.2.

Table 9.1: Mulliken charge of the surface-metal atoms of different clusters used in the

study of adsorption on the top position when embedded cluster method is used.

basis system Bl.1 Bl.2 Bl.3 Bl.4 Bl.5 Bl.6 Bl.7 Bl.8 Bl.9
min Au14 78.90 78.81 79.01 79.09 79.15
opt Au14 78.94 78.86 79.01 79.03 79.16
min Au34 78.83 78.83 78.95 78.92 78.84 79.06 79.11 78.97 79.12
opt Au34 78.81 78.83 78.88 78.97 78.78 79.04 79.09 79.10 79.11

Table 9.2: Mulliken charge of the surface-metal atoms of different clusters used in the

study of adsorption on the bridge and hollow position when embedded cluster method

is used.

basis position system Bl.1 Bl.2 Bl.3 Bl.4 Bl.5 Bl.6

opt (B) bridge Au16 78.79 78.99 79.03 78.90 79.07 79.14

min hollow Au22 78.77 78.89 78.98 79.08 79.08 79.14

opt (B) hollow Au22 78.83 78.76 79.04 79.04 79.06 79.20

As it is evident from these data, the polarization of the cluster is still present. The reason

is the way in which the occupation of the orbitals for the atoms in the environment

was obtained. One remembers that an average procedure on the orbital occupations
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Figure 9.1: The representation of the biggest clusters used in the embedding method:

top—Au34 cluster embedded in 109 Au atoms (top position), middle—Au16 embedded

in 110 atoms (bridge position) and bottom—Au22 cluster embedded in 92 Au atoms

(hollow position) .
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in the Au–cluster was done in every iteration, which means that at the end all the

”atoms” in the environment have the same occupation. In this situation there is no

distinction in the way in which the atoms on the surface and in the bulk are treated in the

environment system. This is not the case in a semi–infinite metal. However an average of

the occupations of the orbitals in atoms belonging to the same layer is not possible. The

reason is that during the self-consistent calculations there is a charge transfer between

the atoms belonging to the same layer as well as between atoms belonging to different

layers. As a result the effective charge of different layers are nonzero. If one would use

the average charge of them for describing the atoms in the environment the result will

be an artificial ionization of the surrounding system. Nevertheless our procedure has

proven to give very good results when it was applied to other systems [57, 58, 66] .

Figure 9.2: The total density of states for the occupied states in a Au34 system for the

on-top site, when the basis B is used.

Other important information about the effect of the environment on the inner system

is given by the DOS diagrams. Figure 9.2 displays the total DOS for a Au34 cluster

for the two methods. At the first site one remarks that for the embedding method

the distribution of the occupied states inside the valence band is more uniform than

for the cluster method. Another aspect which may be observed is the increase of the

gap between the valence band and the peak which lies below it. The analysis of the

expansion coefficients of the molecular orbitals situated in that peak reveals that they

are composed essentially from 6s atomic orbitals from all the atoms in the cluster.
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9.2 Adsorption of element 112 and Hg on the em-

bedded Aun clusters

9.2.1 Adsorption on the top position

For the adsorption on-top of a Au surface–atom, calculations were performed for XAu14

and XAu34 systems. In both cases two types of basis sets were used: minimal basis and

optimized basis B (described in chapter 7). The first type of basis was used with the

aim to check how the lack of completeness of the basis is affected by the presence of the

surrounding cluster.

The Mulliken analysis in table 9.3 shows that both elements stabilize as negative ions.

The effective charge of Hg has a value between 79.60 and 79.65, slightly depending on the

size of the system and the type of basis. For element 112 on have 111.79 ≤ qeff ≤ 111.83.

One notice that the transfer of charge from the adsorbate to the surface-cluster is much

bigger for Hg than for element 112. There is another interesting feature to be mention.

There is a difference in which the enlargement of the basis influence the transfer of

charge: this quantity is slightly larger for minimal basis than for the optimized basis set

in the case of Hg, and slightly smaller for element 112. For both system the increase in

the size of the inner cluster leads to an increasing in the charge transfer, which finally

results in in increase in the binding energy.

Table 9.3: Mulliken charge of the ad-atom and the surface-metal atoms of different

clusters used in the study of adsorption on the top position when embedded cluster

method is used.

basis system Metal Bl.1 Bl.2 Bl.3 Bl.4 Bl.5 Bl.6 Bl.7 Bl.8 Bl.9
min HgAu14 79.62 78.93 78.92 79.01 79.12 79.16
opt HgAu14 79.60 78.97 78.88 79.03 79.08 79.15
min 112Au14 111.79 78.92 78.86 79.01 79.11 79.16
opt 112Au14 111.82 78.95 78.83 79.02 79.06 79.16
min HgAu34 79.65 78.93 78.86 78.94 78.94 78.83 79.07 79.11 78.97 79.12
opt HgAu34 79.64 78.91 78.85 78.89 78.99 78.77 79.05 79.09 79.10 79.11
min 112Au34 111.80 78.88 78.86 78.94 78.94 78.83 79.07 79.11 78.97 79.12
opt 112Au34 111.83 78.84 78.84 78.89 78.98 78.77 79.05 79.09 79.10 79.11

Another aspect which we are interested in is the way in which the Mulliken charge of

different substrate–atoms change in the presence of the adsorbate. The data in table 9.3

show that in the case of XAu14 systems the main changes occur in the effective charge

of the atoms in blocks 1, 2 and 4, i.e. for the atoms in the first layer. For the XAu34

systems the main changes are also for the atoms in blocks 1, 2 and 4. There are also

some very small changes in the atoms in blocks 3 and 5 (second layer), whereas the

effective charge of the atoms in blocks 6, 7, 8 and 9 (outer atoms in the second layer and

the atoms in the third and fourth layers) is practically unchanged.
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Table 9.4: The total and binding energies for the top position, embedded cluster method.

(Basis B type was used.)

System RLDA GGA

Energy[eV] R[a.u.] Energy[eV] Energy[eV] R[a.u.]

B88/P86 PW91/PW91

Au14Hg (min bas) -1.09 5.2 -.57 -.66 5.5

Au14112 (min bas) -.67 5.5 -.25 -.34 5.9

Au14Hg (opt bas) -1.80 4.8 -1.15 -1.25 5.0

Au14112 (opt bas) -1.28 5.1 -.66 -.75 5.3

Au34Hg (min bas) -.78 5.0 -.18 -.29 5.0

Au34112 (min bas) -.38 5.1 .23 .13 5.1

Au34Hg (opt bas) -1.66 5.0 -1.01 -1.12 5.0

Au34112 (opt bas) -1.22 5.1 -.52 -.62 5.1

The potential energy curves (RLDA as well as GGA) for these systems are displayed in

figure 9.3. The main effect of the environment is reflected in the values of the binding

energy, the adsorbate being much stronger bound in comparison with the cluster method.

For the minimal basis results two aspects are remarkable:

• firstly, already mentioned above, unlike the results in table 8.6, the GGA values,

although too small, become bound.

• secondly, there is a significant change in the bond length, the new values (5.2 a.u.

for Hg and 5.5 a.u. for element 112) are much closer to the values obtained with

extended basis sets.

When optimized basis are used, the position of the RLDA bond distance is 4.8 a.u. for

Hg on Au14 cluster and 5.0 a.u. on Au34 cluster. The value of the RLDA bond length

for 112Aun seems to be more stable, being the same (5.1 a.u.) for n=14 and n=34.

Our main aim is to study the relative behaviour of these two elements, i.e. how strong

the element 112 will be bound in comparison with his homologue in the Periodic System.

To this aim the difference in the binding energies was calculated and is shown in table

9.5. The values of ∆Eb = EHg
b − E112

b is four or even five times larger than the values

given by the cluster method (see table 8.7). To see from where this big changes come,

calculations were performed with more extended basis sets (type B’), constructed as

indicated in section 8.3.

Table 9.6 gives the binding energies for Hg and element 112 on an embedded Au14 cluster,

for two types of optimized basis, B and B’, the first one being poorer than the later one.

It can be seen that the quality of the basis sets is important for both the binding energy

values and for the differences of these binding energies (∆Eb). These quantities were

determined only for the distances of the adsorbate to the surface corresponding to the

minimum of the RLDA potential energy curves. For the most complete complete basis

(B’), ∆Eb = −0.2 eV, in comparison with −0.06 eV obtained with the cluster method.
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Figure 9.3: The potential energy curves for the HgAu14 and 112Au14 systems for the

on-top site, embedding method, when the basis B is used.
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Figure 9.4: The partial crystal overlap population (PCOOP) for the occupied and unoc-

cupied states for the valence orbitals in an embedded XAu14 system for the on-top site,

when the basis B’ is used.
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Table 9.5: The differences (∆Eb = EHg
b − E112

b ) in the binding energies for the top

position, embedded cluster method. (Basis B type was used.)

System Energy[eV]

RLDA B88/P86 PW91/PW91

Au14X (min bas) -.42 -.32 -.32

Au14X (bas B) -.52 -.49 -.50

Au34X (min bas) -.40 -.41 -.41

Au34X (bas B) -.44 -.49 -.50

Table 9.6: Binding energies (RLDA) for the XAu14(9,4,1) clusters, when different basis

sets are used keeping the distance between the adsorbate and the Au14(9,4,1) cluster

constant.

System Binding energy [eV] R

basis B basis B’ [a.u.]

HgAu14(9,4,1) -1.80 -2.16 5.0

112Au14(9,4,1) -1.28 -1.96 5.2

Further information may be obtained from the analysis of PCOOP diagrams, 9.4. Be-

cause of the external potential produced by the environment, there is a moving of the

Fermi level (εF ) towards lower values. In order to make a comparison possible with the

corresponding diagrams for the cluster method, the plots in figure 9.4 were drawn after

the alignment of εF was done.

First we remark a decreasing of the occupation of the anti-bonding states for both ns

valence orbitals. The contribution to the binding of 6s1/2 for Hg is higher than that of

7s1/2 for element 112. Moreover the occupied states for 6s1/2(Hg) are more spread along

the energy spectra occupying 2/3 of the valence band, whereas the 7s1/2(element112) lies

only in the left-hand side half part of the corresponding band. This is in agreement with

the Mulliken analysis which give an effective charge of 1.50 for Hg and 1.83 for element

112. When one compares these values with qHg
eff (6s1/2) = 1.75 and q112

eff(7s1/2) = 1.89

from the cluster method, it can be seen that 6s1/2(Hg) was more sensitive to the changes

induced by the surrounding than 7s1/2(element112). This is not unexpected since the

first is the highest occupied level in the isolated atom, whereas 7s1/2 is energetically

situated between 6d3/2 and 6d5/2 in the isolated atom.

A second important difference is given by the (n-1)d3/2 and (n-1)d5/2 of both elements.

For element 112 the 6d3/2 continues to have a similar distribution along the energetic

spectrum with 7s1/2. The main difference of them relative to 6d5/2 is given by the way

in which they contribute in the region around the -7.5 eV in the spectrum. Here 6d5/2

occupies binding states whereas 7s1/2 and 6d3/2 occupy anti-bonding states.

In the case of Hg the similarity in the distribution of 5d5/2 and 6s1/2 (observed in the

cluster-method results) almost disappear. The Mulliken analyses gives qHg
eff (5d3/2) =
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Table 9.7: Mulliken charge of the adsorbate and the surface-metal atoms of different

clusters used in the study of adsorption on the bridge and hollow position when embedded

cluster method is used.

basis position system Bl.1 Bl.2 Bl.3 Bl.4 Bl.5 Bl.6

opt (B) bridge HgAu16 79.56 78.80 79.05 79.07 78.90 79.10 79.15

opt (B) bridge 112Au16 111.79 78.74 79.03 79.06 78.90 79.10 79.14

opt (B) hollow HgAu22 79.67 78.83 78.76 79.04 79.08 79.07 79.19

opt (B) hollow 112Au22 111.93 78.82 78.78 79.05 79.04 79.06 79.21

3.992 and qHg
eff (5d5/2) = 5.977 for embedding method, and qHg

eff (5d3/2) = 3.989, qHg
eff (5d5/2) =

5.973 for the cluster method.

Another aspect which should be discussed is connected with the peak lying below the

continuum valence band (see figure 9.2). None of the valence orbitals of Hg or element

112 interact with MO from that region of the energy spectrum.

9.2.2 Adsorption on the bridge and hollow position

The bridge and hollow position corresponds to adsorption on sites with higher coordi-

nation numbers. The Mulliken analysis was done and the effective charges of the atoms

in different symmetry blocks (labeled as in figures 8.3 and 8.2) are shown in table 9.7.

Both species stabilize as negative ions as follows:

• for the XAu16(8,6,2) embedded systems (bridge position) qeff (Hg) = 79.56 and

qeff (112) = 111.79

• for the XAu22(12,5,4,1) embedded clusters (four-fold site) qeff(Hg) = 79.67 and

qeff (112) = 111.93

In the case of the two-fold adsorption site, one can see that the distribution of charge

in the embedded Au16 system slightly differs for the two elements. Thus in the case of

Hg, despite of a transfer of charge of 0.44 from the adsorbate to the inner cluster, the

effective charge of the two atoms in symmetry block 1 is almost unchanged. The main

change in the electronic charge occurs for the atoms in symmetry blocks 2, 3 and 5 which

are in contact with th surrounding environment. In the case of element 112 there is a

change also in the effective charge of the atoms (labeled by 1 in figure 8.3) with which

the adsorbate mainly interact. In the case of the four–fold site, the main change in the

effective charge of Au atoms corresponds to the 4-th and 6-th symmetry blocks. For

element 112 the induced changes are very small.

For the bridge position calculations were performed only for a distance between adsorbate

and surface which corresponded to the bond length obtained for the same system when

the cluster method was applied. The corresponding binding energies are shown in table

9.8 together with the minima of the potential energy curves of XAu22 systems. The
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Table 9.8: The total and binding energies for the bridge and hollow position, embedding

method. (Basis B type was used.)

System RLDA GGA

Energy[eV] R[a.u.] Energy[eV] Energy[eV] R[a.u.]

B88/P86 PW91/PW91

HgAu16 (opt B) -1.99 4.3 -1.09 -1.21 4.3

112Au16 (opt B) -1.50 4.5 -.61 -.72 4.5

HgAu22 (opt B) -2.30 3.3 -1.26 -1.44 3.5

112Au22 (opt B) -1.90 4.0 -.88 -1.02 4.4

Table 9.9: The differences (∆Eb = EHg
b − E112

b ) in the binding energies for the bridge

and hollow positions, embedding method. (Basis B type was used.)

System Energy[eV]

RLDA B88/P86 PW91/PW91

Au16X (opt B ) -.49 -.48 -.49

Au22X (opt B ) -.40 -.38 -.42

difference in the GGA binding energy (see table 9.9) are 0.49 eV for the XAu16 and 0.42

eV for the XAu22 system, at the same order with those obtained for the top position.

Figures 9.7 display the PCOOP diagrams for the occupied valence orbitals of Hg and

element 112, corresponding to the RLDA minimum of the potential energy curves (i.e.

RHg = 3.3 a.u., R112 = 4.0 a.u.). One can see that the strong bond for HgAu22 is due

mainly to the fact that the occupation of anti-bonding states for 6s1/2 is important (the

two filled dashed peaks on the right of the Fermi level). For element 112 one remarks

that the overlap population of both bonding and anti-bonding orbital fragments is quite

small. These corresponds to the fact that for a 4.0 a.u. distance relative to the surface,

the distance to the nearest neighbours (the atoms in the symmetry block 1 in figure

8.2) is 5.56 a.u. In this case the overlap between the valence orbitals in the basis set of

element 112 overlap only weakly with the MO of the embedded Au22 cluster considered

as a separate system.

Figures 9.6 evince that the region of the total DOS of states probed by Hg lies in low

energy part of the valence band, whereas for element 112 it stand most on the middle

part of these band.
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Figure 9.5: The RLDA and GGA binding energies for the XAu22 embedded systems.

9.3 Comparison of the cluster and embedding method

results

Figures 9.8, 9.9 and 9.10 display the binding energies of different XAun systems as a

function of the number of atoms considered in the cluster. As can also be seen in Tables

8.7, 8.10 and 8.12 the difference in the binding energy of Hg and element 112 is about 0.1

eV. As discussed in details in chapter 8 this result is not consistent because small systems

are not able to describe the surface which we would like to model in order to describe

the adsorption energy. This can be seen e.g. for XAu9 in top position or XAu22 for

hollow position where an inversion of the order of the binding occurs. This definitely is

not astonishing because these systems are too small to describe this physical situation.

The embedding method on the other hand, which allows a much better modeling of

the surface of a solid leads to a systematic behaviour of the binding energies which are

presented in Figures 9.8, 9.9 and 9.10 or Tables 9.5 and 9.9. The remaining problem is

the use of the various basis sets. The results obtained with basis set B give a difference

of the binding energy of about 0.4 eV, which is quite large in comparison with the value

of 0.1 eV mentioned above for the cluster calculations. The reason became evident when

we included the best basis set which we obtained from diatomic optimization. At the

beginning we assumed that the basis set B was good enough. This is was not true.

The argument which we had was that the error in the calculation with the cluster and

the embedding calculation would be eliminated by the difference with respect to the

calculation without the adsorption atom. To our astonishment we observed that the

basis B and B’ lead to the same results in the cluster calculation whereas the embedding

calculation showed a different behaviour.
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Figure 9.6: The total DOS of an embedded XAu22 system and the PDOS for the ad–atom

of the occupied states for the hollow position, when the basis B is used.
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Figure 9.7: The partial crystal overlap population (PCOOP) for the occupied and un-

occupied states for the valence orbitals in an embedded XAu22 system for the hollow

position, when the basis B is used.
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Figure 9.8: The RLDA binding energies as a function of the number of atoms used to

model the surface.(top—cluster method; bottom—embedding method)
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Figure 9.9: The GGA (B88/P86) binding energies as a function of the number of atoms

used to model the surface.(top—cluster method; bottom—embedding method)
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Figure 9.10: The GGA (PW91/PW91) binding energies as a function of the number of

atoms used to model the surface.(top—cluster method; bottom—embedding method)
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Chapter 10

Summary and outlook

One has to be aware that such ab–initio calculations of the adsorption energy of an ad–

atom on a surface is on the verge of the possibility of a relativistic molecular program

which we are using here. Of course a number of similar calculations has been performed

by other authors. In these cases the method was much simpler (like the Diophantine

method), or the clusters were quite small. The use of various exchange correlation

potentials was another challenge of the present work.

In our case we have chosen the most complicated system. Hg and element 112 are

elements with a closed electronic shell, thus behaving like van der Waals systems. One

knows that usually van der Waals bonding can not be described with the usual form of

density functionals. Since we deal here with these elements interacting with the surface

of gold the method can be applied.

We have learned during the course of this work that one has to take great care in the

choice of the basis. As was discussed in the text we were not able to use the best optimized

basis for the cluster, as well as for the embedded cluster, otherwise calculations would

have not been finished within any realistic time interval. A calculation with such an

optimized basis for Au with 50 atoms, of C4v symmetry, would need about 1/2 a year

and double for a system with C2v symmetry.

We have seen that the cluster calculations have not converged to the true value of

adsorption energy for the two systems: Hg and 112 on the gold surface. Even 34 atoms

do not seem to be sufficient to reach the convergence in size for the cluster calculations.

From analogous calculations for Cu on a Cu surface we know that we need at least 60

atoms in the cluster to arrive at a converged value. As was mentioned above this is not

possible for a gold cluster. On the other hand, we definitely have reached the cluster

size convergence with the embedded cluster method. Using the external potential (both

Coulomb and exchange-correlation) in this method resulted in a better convergence to

the desired energy state. As was shown in the last chapter, the energy difference between

Hg and element 112 interacting with a gold cluster became very reasonable. The further

work here could be the usage of better basis sets.

As a final result we can state that the binding energy difference between the adsorption

of these two elements is about 0.2 eV. Since we know the adsorption energy for Hg on

82



gold to be 1.05 eV we can predict that the binding energy of element 112 on gold is

about 0.85 eV. The largest binding energy will not be on the top site but at the hollow

site.

One of the unsolved questions in this work is the use of other optimized basis sets. In

our calculations we optimized basis set for the dimer, which could be the case for the

adsorbtion in the top position. If we arrive at the bridge or the hollow site then this

basis may not be the optimal. In our future research we will optimize the basis with 3

atoms, which we can use for the bridge site, or with 5 atoms which we can use for the

four–fold site.

Nevertheless, we hope that the obtained value of the binding energy of element 112 on

the gold cluster can now be used for the identification of this superheavy element in a

chemical thermo-chromatographic experiment.
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[54] M. Schädel, The Chemistry of Superheavy Elements, Kluwer Academic Publishers,

2003

[55] V. Pershina, T. Bastug, C. Sarpe–Tudoran, J. Anton, B. Fricke, Nucl. Phys. A,

734, 200 (2004)

[56] R. A. van Santen, Progr. Surf. Sci., 25, 253 (1987)

[57] T. Jacob., S. Fritzsche, W.-D. Sepp Physics Letters A, 300, 71–75 (2002)

[58] T. Jacob, J. Anton, C. Sarpe–Tudoran, W.-D. Sepp Surf. Sci., 536, 45–54 (2003)

[59] Advances in Quantum Chemistry 6, Academic, New York (1972)

[60] S.J. Rose, I.P. Grant and N.C. Piper, J. Phys. B: At. Mol. Phys.,11, 1171, 1978

[61] J.P. Desclaux, At. Data Nucl. Data Tables,12, 311, 1973

[62] E. Eliav, S. Shhmulyian, U. Kaldor, Y. Ishikawa, J. Phys. B, 35, 1693 (2002)

[63] J. Kordis, K. A. Gingerich, Ber. Bunsenges, J. Chem. Phys. ,83 ,5114 (1974)

[64] J. Anton, B. Fricke, E. Engel, Phys. Rev A, 69, 0125505 (2004)

[65] C. Kittel, Introduction to Solid State Physics, John Wiley &Sons, 7-th edition (1996)

[66] T. Jacob Inaugural–Disertation zur Erlagung des akademischen Grades eines Dok-

tors der Naturwissenschaften,, Kassel, Dezember 2001

[67] T. Jacob, W.A. Goddard, J. Anton, C. Sarpe–Tudoran, B. Fricke, Eur. Phys. J.

D24, 61–64 (2003)

[68] C. Sarpe–Tudoran, V. Pershina, B. Fricke, J. Anton, W.D. Sepp, T. Jacob Eur.

Phys. J. D24, 65–67 (2003)

87



Für die Anregung zu dieser Arbeit und die Bereitstellung der hervorragenden Arbeits-

bedingungen zu ihrer Anfertigung danke ich Herrn Prof. Dr. Burkhard Fricke.

Herrn Prof. Dr. S. Fritzsche danke ich für die Übernahme des Koreferats.
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Jean–Monnet du Saint–Etienne, Laboratoir du Signal et Instrumentation

1992 Diploma in Physics

1992–1997 physics theacher, ”Elena Cuza” High School, Craiova

1997–1999 Associate at University of Craiova, Faculty of Physics

1999–Feb 2001 Assistent professor at University of Craiova, Faculty of Physics

since March 2001 PhD Student at University of Kassel

89


	Zusammenfassung
	Abstract
	Contents
	1 Introduction
	2 The many-body problem
	2.1 The Born-Oppenheimer approximation
	2.2 The Harttree-Fock method
	2.3 Scaling behaviour of quantum mechanical methods

	3 Density Functional Theory
	3.1 The Hohenberg-Kohn Theorems
	3.2 The Kohn-Sham Formulation
	3.3 The realtivistic Kohn-Sham equations
	3.4 Non-collinear form of Kohn-Sham equations
	3.5 Choise of the Exchange-Correlation Functional
	3.5.1 Local-density approximation
	3.5.2 The Generalised Gradient Approximation (GGA)


	4 Technical aspects
	4.1 MO-LCAO Method
	4.2 Calculation of the Hartree potential
	4.2.1 The model density
	4.2.2 The least-square-fit of the molecular density

	4.3 Frozen-Core Approximation
	4.3.1 Moleculat orbitals in frozen-core approximation
	4.3.2 Calculation of the total energy in frozen-core approximation

	4.4 Mulliken analyses, DOS and COOP
	4.5 Optimization of the atomic basis functions

	5 Adsorption on metal surfaces
	5.1 Cluster method
	5.2 Cluster-Embedding method
	5.2.1 Exchange-correlation energy in cluster embedding method
	5.2.2 Choice of environment density


	6 Atomic properties
	7 Diatomic calculations
	8 Cluster calculations
	8.1 Geometry
	8.2 Unperturbed surface clusters
	8.3 Adsorption of element 112 and HG on the Au n clusters
	8.3.1 Adsorption on the top position
	8.3.2 Adsorption on the bridge position
	8.3.3 Adsorption on the hollow position


	9 Embedding calculations
	9.1 Unperturbed surface clusters
	9.2 Adsorption of element 112 and Hg on the embedded Au n clusters
	9.2.1 Adsorption on the top position
	9.2.2 Adsorption on the bridge and hollow position

	9.3 Comparison of the cluster and embedding method results

	10 Summary and outlook
	Bibliography

