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nsIn context-awareness, sensors in the vicinity of the user are utilized 

to infer a user‘s situation. There is no single sensor that is able to 

correctly and completely access a user‘s situation, context aware-

ness is always dependent on a multitude of sensor information to be 

aggregated to at least estimate a user‘s situation. It cannot be safely 

assumed that the clocks of all these sensor devices are accurately 

synchronized. 

In this book

•	 we discuss the issues related to time synchronization in context 

aware applications,

•	 analyze known time synchronization approaches and their ap-

plicability in context aware applications,

•	 analyze and evaluate the reasons that cause time differences 

between devices,

•	 evaluate common reasoning algorithms for their susceptibility 

to time synchronization related decreases of reasoning accu-

racy,

•	 propose a conceptual approach to cope with the time synchro-

nization issues along with a new architecture for context awa-

reness,

•	 and propose to incorporate time synchronization information 

into Quality of Context.
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Abstract
Twenty years ago MarK Weiser formulated the vision of
ubiquitous computing. A vision by definition is something
unreal, so we should no longer talk of the vision of ubiquitous
computing but rather of the reality ubiquitous computing. We
are in the age of mobile computing, a key enabler of ubiquitous
computing, home automation is spreading out more than ever,
and evermore home electronics devices have built in network
connectivity.

Central to Weiser’s considerations was the threatening
nature of the pervasive computing devices that constantly
may demand our focus. That led Weiser to the belief that
in ubiquitous computing the devices have to fade into the
background. We share that belief, the technological advances
we are experiencing have to be accompanied by software
approaches that allow the devices to act autonomously to our
benefit.

After more than fifteen years of research on the topic of
context awareness we are on the verge of building consumer
products that utilize the findings of this research field. How-
ever, we feel that one crucial aspect of context awareness is so
far overlooked. In this thesis we plead for the importance of
that aspect, time synchronization.

There is no single sensor that is able to correctly and
completely access a user’s situation, context awareness is
always dependent on a multitude of sensor information to be
aggregated to at least approximate a user’s situation. It cannot
be safely assumed that the clocks of all these sensor devices
are accurately synchronized. The several reasons are detailed
in this thesis. We also will show that not all, but a significant
share of context awareness algorithms is dependent on proper
time synchronization to achieve the desired accuracy.

Given this dependency, we propose two approaches to
cope with the problems that arise when we deal with time
synchronization in ubiquitous computing. The very nature of



ubiquitous computing hinders the simple reuse of known time
synchronisation protocols.

These protocols are still valuable and may be useful in
certain configurations of ubiquitous devices, but we will show
why they are not always feasible. In the end, the known
protocols together with the two proposed in this thesis will
help to ensure better time synchronization in ubiquitous
computing applications and thus better accuracy for context
reasoning. Thus, the main concern of this thesis is to raise
the awareness of the role of time synchronisation in context
reasoning dependent applications.



Zusammenfassung
Vor zwanzig Jahren hat Mark Weiser seine Vision von ’ubi-
quitous computing’ formuliert. Eine Vision ist per Definition
nicht real, daher sollten wir nicht länger von einer Vision
reden, wenn wir von ’ubiquitous computing’ reden. ’Ubiquitous
computing’ ist vielmehr die Realität. Wir leben im Zeitalter
des ’mobile computing’, einem wichtigen Teil von ’ubiquitous
computing’; es ist heute nichts Außergewöhnliches, Heizung,
Beleuchtung, Belüftung und Ähnliches zuhause automatisch
steuern zu lassen und immer mehr Haushaltsgeräte kommen
mit Netzwerkfähigkeiten.

Zentraler Punkt in Weisers Überlegungen war die be-
drohliche Natur der allgegenwärtigen Computer, die nach
unserer Aufmerksamkeit verlangen. Dies führte Weiser zu der
Überzeugung, dass beim ’ubiquitous computing’ die Compu-
ter im Hintergrund verschwinden müssen. Wir teilen diese
Überzeugung, dass die technologischen Fortschritte, die wir
erfahren müssen, von Softwareansätzen begleitet werden, die es
ermöglichen, dass die Technologie autonom zu unserem Vorteil
handelt.

Nach mehr als fünfzehn Jahren der Forschung im Bereich
der Kontextsensitivtät stehen wir kurz davor, dass Endver-
braucherprodukte von den Erkenntnissen dieser Forschung
Gebrauch machen. Allerdings denken wir, dass bisher ein
wichtiger Aspekt der Kontextsensitivität übersehen wurde.
In dieser Dissertation plädieren wir für die Beachtung dieses
Aspekts, der Zeitsynchronisation.

Es gibt nicht den einen Sensor, der alleine die Situation
eines Nutzers korrekt und vollständig erkennen könnte. Kon-
textsensitivität ist immer auf die Kombination von Informatio-
nen vieler verschiedener Sensoren angewiesen, um die Situation
näherungsweise zu erkennen. Dabei kann man nicht einfach
davon ausgehen, dass die Uhren aller Sensorgeräte korrekt
synchronisiert sind. Die verschiedenen Gründe dafür sind in
dieser Dissertation aufgeführt. Des weiteren wird gezeigt,



dass zwar nicht alle, aber doch sehr viele Algorithmen im
Bereich der Kontextsensitivität davon abhängig sind, dass die
Uhren richtig synchronisiert sind und nur so die gewünschte
Genauigkeit erreicht werden kann.

Aufgrund dieser Abhängigkeit werden hier zwei Ansätze
vorgestellt, wie die Probleme, die auftauchen, wenn es um
Zeitsynchronisation in ’ubiquitous computing’ geht, überwun-
den werden können. Es liegt in der Natur des ’ubiquitous
computing’, dass bekannte Protokolle zur Zeitsynchronisation
nicht einfach übertragen werden können.

Sicher sind die bekannten Protokolle immer noch wertvoll
und können in bestimmten Konstellationen im ’ubiquitous
computing’ eingesetzt werden. Trotzdem werden wir zeigen,
warum die bekannten Protokolle nicht immer funktionieren.
Insgesamt werden sich die bekannten Protokolle und die beiden
hier vorgestellten Ansätze ergänzen und so eine bessere Zeit-
synchronisation für Anwendungen des ’ubiquitous computing’
sicherstellen und somit auch zu einer höheren Genauigkeit
für kontextsensitive Ansätze führen. Daher ist es das Haupt-
anliegen dieser Dissertation, das Bewusstsein für die Rolle
der Zeitsynchronisation im Umfeld der Kontextsensitivität zu
verbessern.
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Chapter 1

Introduction

When, nearly twenty years ago, Mark Weiser [1] formulated his
vision of ubiquitous computing, while today in some parts it
is still a vision, his prospects were surprisingly accurate. The
only aspect which he was wrong about, is the time when all
the technological advances are put together in order to provide
a whole new experience of computing. While, today, we have
achieved all technological advances Weiser has foreseen, we
still need to go the last mile and put all this technology to
work in a seamless way.

The advances Weiser has foreseen are the on-going decrease
in size of computer devices along with increasing processing
power and storage, the advances in display technologies and
the increasing number of computing devices virtually every-
where in our lives. More precisely Weiser envisioned smart
phones, tablet computers like the iPad, and smart boards.
Also Weiser has given an accurate account of the challenges
and developments in the software framework and operating
system field that are imposed by the technological advances
of hardware. If one carefully reads Weiser’s visionary paper,
one can even find that he hinted to the appearance of cloud
computing.

1



1 Introduction

Besides the technological foresight, even more important,
Weiser formulated requirements how the technology has to be
deployed in order to contribute to our everyday lives instead of
interfering with it. Or as Weiser states it, ’the most profound
technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable
from it.’ [1]

To achieve this, users must be freed from the burden of the
control loop, computer use has to be so simple, that we are no
longer aware of it, ’only when things disappear in this way are
we freed to use them without thinking and so to focus beyond
them on new goals’ [1]. The control loop, the constant need
for explicit user input, prevents computers from fading into
the background. Weiser, thus, demands that computers ’must
know where they are’ to adapt their behavior [1]. Today this
concept has been extended by several authors and builds the
foundation of an entire research area called context awareness
[2]. The goal of context awareness is that a computing device
not only knows where it is, but also knows all kinds of other
facts about the environment. Basically, the ultimate goal
is that the computer knows what the users wants and acts
accordingly on the user’s behalf, without the user’s explicit
input.

Smart phones are the first computing devices that are
becoming truly ubiquitous and also are the largest deployed
distributed computing platform. To make use of the arising
opportunities in the sense of Mark Weiser, it is necessary to
also address the software challenges he described. There need
to be operating systems, or at least software frameworks on top
of the existing operating systems, that support the dynamic,
heterogeneous nature of ubiquitous computing. Software
developers need to be supported by those frameworks to
build applications that can adapt to the user’s context. The
main contribution of this thesis is a detailed analysis of the

2



1 Introduction

requirements that need to be fulfilled by software frameworks
and architectures for ubiquitous computing, and in particular
for context aware applications running on smart phones.

While there are already many different approaches towards
software frameworks for ubiquitous computing and context
aware applications published (see Chapter 2.2), there is at least
one crucial requirement that is so far overlooked: time synchro-
nization between the devices. We will show in detail where
time synchronization is important in ubiquitous computing,
why it is not yet solved, how it influences the computer’s
process of understanding the user’s needs, and how software
frameworks and architectures can deal with it. Since smart
phones are the first truly ubiquitous devices we will especially
focus on the use of smart phones in context aware applications.

In the following Chapter 1.1 the research areas important to
this thesis and the basic definitions are discussed. Afterwards,
In Chapter 1.2 the problem dealt with in this thesis is discussed
and in Chapter 1.3 the challenges that arise from this problem
are outlined. Chapter 1.4 summarizes the contributions of this
thesis. Chapter 1.5 presents the outline of this thesis and in
Chapter 1.6 all previous publications of results presented in
this thesis are listed.

1.1 Context Awareness and Ubiquitous
Computing

As already outlined, this thesis centers on time synchroniza-
tion in applications that are context aware. Context aware
applications are an important part of the vision of ubiquitous
computing. Now we will give a more precise description of the
central terms of this thesis.

3



1 Introduction

1.1.1 Ubiquitous Computing

The term ubiquitous computing was first used by Mark Weiser
to refer to a future era of computing where computers are
ubiquitous and weaved into our lives [1]. Weiser has given a
detailed description of what he meant by ubiquitous comput-
ing but no precise definition. That may be why his vision today
is often misunderstood. The basic misunderstanding is what
Weiser meant when he said computers will be invisible. Often
this is taken as literally invisible. What Weiser really meant
was that computer use will be no longer recognized but rather
’fade into the background’ [1]. Even though the computing
devices may become so small that they are not easily noticed
and can be hidden.

What is not clear from Weiser description is, if he sees the
evolution of hardware and new usage paradigms as one asso-
ciated beneficial development or if the evolution of hardware
poses a threat that has to be answered by the development of
new usage paradigms. In every case, since Weiser formulated
his vision, we have seen a fast evolution of hardware technology
that is already threatening to the users and thus now we need
to answer by bringing Weiser’s envisioned usage paradigms to
life.

Central to those paradigms is that computer use has to be
so easy that it no longer requires thinking or the computer has
to be intelligent enough that it no longer requires explicit user
input. That way it can ’fade to the background’.

When a computer should fulfill a user’s intention without
a user’s input, the computer has to a certain degree to
understand the user. The process of understanding consists of
two steps. First, the computer has to know the user’s context
and then the computer has to know the user’s preferences for
that context.

4



1 Introduction

1.1.2 Context awareness

The research field dealt with in this thesis is context awareness,
which is the first step of understanding a user’s intention,
and thus is an important part of the vision of ubiquitous
computing.

There are several definitions of what context awareness is.
The first definitions are very close to Weiser’s idea that a
computer should know where it is and so focus on the location
of users and devices as only context [1, 3, 4]. Later Schilit et
al extended this definition with the distinction of categories of
context, namely user context, physical context and computing
context [5].

A. Dey’s definition of context awareness is the definition
that is most commonly used [6]:

Definition 1. "Context is any information that can be used to
characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interaction
between a user and an application, including the user and
applications themselves."

While this definition is very broad, and thus often used,
several authors criticize it as imprecise and for only shifting
the abstraction to the word information, which is also very
abstract [7, 8]. Liebermann et al thus define context as every
input other than explicit input [9]. A detailed discussion of
the definitions is given by Sigg [10]

As the many attempts to define context show, the word
context is hard to grasp because it is not describing an actual
object but rather can be anything. It is an abstract concept
describing all that is known at an instance of time at which
the process of understanding happens. Only small pieces of
information out of all contexts is actually important for the
understanding. So what is really meant by ’context’ in the

5



1 Introduction

context of this thesis is all knowledge that is relevant to a
decision a user may make.

Relevant knowledge can be anything a user has learned from
past experiences and anything he experiences right at the time
he understands a situation, which is what he senses from the
environment. Unfortunately only the later can be, more or
less easily, accessed be computers. That is done using sensors;
environmental (hardware) sensors or software sensors.

Environmental sensors are sensors that sense physical facts
from the environment, e.g. light sensors, temperature sensors,
acceleration sensors or video cameras. Software sensors
retrieve information from the user’s software and are thus
dependent on previous explicit user input, e.g. if a user is
in a meeting can be sensed by a software sensor accessing the
user’s calendar on his smart phone.

The hope of context awareness is that it is possible to
gather enough relevant information from available sensors that
a user’s intention can be guessed. How relevant information is
mapped to a intention is not in the scope of this thesis, but a
common approach is to rely on stored rules, that can either be
user defined or learned from the history of previous decisions.

When, instead of static desktop machines, computers
become tiny mobile devices that incorporate communication
and sensing capabilities, due to this sensing capability, these
devices provide a measure of context and can share it through
wireless communication [11, 12]. In a world of ubiquitous
devices, like Weiser envisioned, the control loop in which
today’s users and their desktop computers are stuck, will no
longer be feasible due to the sheer number of devices.

1.1.3 Low level and high level context

The knowledge of context relies on the measurement of sensor
data from various sensors, e.g. accelerometers or audio and
video data as well as GPS data. This sensor data is aggregated

6



1 Introduction

into an abstract high level context, like "the user is standing";
this processing is commonly referred to as context reasoning.

Environmental sensors normally emit what is called raw
data that is of no meaning to a human user without further
processing. However, because physical quantities are mea-
sured, the quantities can be expressed as SI derived units.

The human mind has a different way of accessing the
environment; it is not accessing every physical quantity on
its own but rather aggregates tons of information and labels
categories of information. For example, if a human is asked
to describe the weather at a particular time, he will answer
something like ”it is a pleasant summer day” instead of ”it
is 32◦ C, with a light intensity of 100,000 lux and a relative
humidity of 40%”. Therefore most authors agree that context
from sensors should be aggregated and processed in order to
derive ’high level’ context [12, 13].

As of now, there is no clear definition how high level context
is distinguished from low level context. We define it as follows:

Definition 2. Low level context is context that can be ex-
pressed as physical quantity with unit or as Boolean value.

Definition 3. High level context is context that is described
by symbolic labels where the mapping from the set of low level
contexts to a label depends on user preferences.

For example, the low level context set (32◦ C, 100,000 lux,
relative humidity 40%) may be labelled as ’hot summer day’
for one user but as ’pleasant summer day’ for another user.

The distinction between high level and low level contexts,
along with the necessity to process raw context in several steps,
in order to derive high level context, will play an important
part in the analysis of the causes for time synchronization
issues.

7



1 Introduction

1.2 Problem statement

The research conducted for and described in this thesis
centers on the necessity for and the current lack of time
synchronization support in context aware applications. As
of now, context aware applications, which aggregate context
data from several sources, either neglect the need for time
synchronization or implicitly assume that time on the involved
devices is synchronized. However, while the neglect of the
need for time synchronization may lead to decreased reasoning
accuracy, the assumption that device clocks are in sufficient
sync is disproved in this thesis.

The aim of this thesis is to analyze what causes time
differences and to evaluate the influence of these differences
on the reasoning accuracy for different applications of human
movement detection with accelerometers. With directed
acyclic graph based reasoning an architectural approach to
cope with identified timing issues will be proposed and evalu-
ated in simulation studies as well as practical experiments.

Even if the time on involved devices is synchronized, there
are still time related issues. Reasoning accuracy often relies
on the aggregation of context data that is gathered at the
same time frame. Therefore, not only the clocks need to
be synchronized, but also the context gathering needs to be
synchronized. Current approaches favor a publish/subscribe
model of communication, which is problematic when contexts
need to be gathered in a synchronized way.

In common architectural solutions for communication in
context aware applications publish/subscribe communication
(e.g. [14] and [2]) is used to inform interested parts of a
context aware application whenever a context value changes.
These values then have time stamps attached, which are
taken from the sensor device’s clock. However there are four
different reasons that cause time differences when retrieving

8



1 Introduction

measurements from sensor devices [15]:

• The clocks are not synchronized with the desired accu-
racy. Wireless Sensor Networks (WSNs) are often associ-
ated with low cost sensors that may cause device quality
related and other problems, e.g. unstable oscillators,
limited energy and limited communication bandwidth
[16]. While there are several clock synchronization
approaches proposed that can archive sufficient accuracy
[16, 17, 18, 19, 20, 21], ubiquitous applications often
combine data from several sensors that are not part of a
WSN but are rather discovered dynamically, and thus are
likely to be not synchronized at all. Additionally, some
devices may not offer any means of time adjustment.

• Sensors have different construction-related physical ca-
pabilities. In dynamic environments where several
sources of sensor data may be dynamically discovered
and aggregated, it is not safe to assume that all sensors
have the same physical capabilities even if they are of
the same general type. Furthermore, sensors of different
types clearly have different physical capabilities and
different measurement characteristics like sampling rate.
Therefore, some sensors may take more time than others
to sense a change in the physical environment.

• The sensor nodes have additional tasks to fulfill. For
example, smart phones are often equipped with ac-
celerometer sensors and light sensors, however they
clearly have additional processor load. Normally, there
is no way to influence the scheduling algorithms on the
device to ensure measurements at a fixed frequency.

• Common understanding of context reasoning foresees
the pre-processing of sensor data in several steps and
the inference of high level contexts out of the raw

9
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data [15, 22, 23, 24, 25]. These processing steps all
consume processor capacity and in distributed scenarios
are foreseen to be carried out on different devices with
respect to the device capabilities, which consumes time
while sending data over the network. Therefore, the time
it takes before sensor data reaches the application is not
only determined by the sensor itself, but also by the time
it takes to process the data. This time is the sum of the
time consumed by the processing steps and the network
delays and can vary from value to value and sensor to
sensor.

In none of the popular architectures for context aware
applications the timing issues are considered [22, 23, 24, 25].
As computations on context are of distinct time complexity
and context information is frequently updated, a time syn-
chronization mechanism is necessary. Otherwise, a computed
context value, which is associated with a single time interval
might result from input data of distinct time intervals. En-
suring a synchronized processing might increase the accuracy
of reasoning and thus the quality of context [26]. We will
show that, for an example of movement recognition from
acceleration data, the accuracy decreases in the order of 5% for
commonly used classification learning algorithms and a typical
clock drift we observed on smart phones.

1.3 Challenges

Due to the fact that smart phones are the first real world
deployment of ubiquitous devices, real world occurrences of
context aware applications still are limited to location based
services. Therefore, as of now, there is no data available
about large scale context aware applications in ubiquitous
environments that really aggregate multiple sensors and how

10



1 Introduction

time synchronization influences the behavior of context aware
applications.

The very nature of ubiquitous computing makes the time
synchronization in such environments challenging. Most
devices will be small and mobile; thus ubiquitous environments
are highly dynamic. Devices will appear and vanish all the
time. Also the devices will be as heterogeneous as their owners
and their preferences.

In contrast to the well studied wireless sensor networks,
which consist of homogeneous, special purpose devices, in a
controlled environment, in ubiquitous computing it cannot be
assumed that all devices provide unified APIs to access and
adjust device time. Additionally, no assumptions should be
made about the accuracy and quality of the device’s clocks.

At last, the fact that devices will belong to different users
may be the biggest obstacle for time synchronization. It must
be assumed that every user has different preferences how or
if at all the clocks on his personal devices can be adjusted by
external entities, which are likely unknown to the user and out
of his control. It cannot be excluded that a user intentionally
sets his devices’ clocks to a wrong time.

1.4 Contribution

This thesis contributes in several ways to the understanding
and the solution of the time synchronization issues in context
aware applications.

• First of all, known time synchronization approaches are
discussed and analyzed for their applicability in context
aware applications.

• To grasp the dimension of the issues, the reasons that
cause time differences between devices are analyzed and
experimentally verified.

11
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• Based on findings about typical time differences from the
analysis of the reasons, common reasoning algorithms
are tested for their susceptibility to time synchronization
related decreases of reasoning accuracy.

• To cope with the time synchronization issues a concep-
tual approach along with a new architecture for context
awareness is proposed and evaluated.

• At last, the incorporation of time synchronization infor-
mation into Quality of Context information is proposed.
Quality of Context is the attempt to rate context data
quality, e.g. how likely a context date is accurate.
Given the dependency of reasoning accuracy on time
synchronization shown in this thesis, information on
time synchronization seems to be a natural component
of every attempt to predict the accuracy of context
reasoning.

Generally, because the important influence of time synchro-
nization on accuracy of algorithms for context recognition is
not regarded so far, the main contribution of this thesis is to
raise the awareness of the time synchronization issues in the
context awareness research community.

1.5 Outline

This thesis is organized in 8 Chapters. Following the first,
introductory chapter, the state of the art is summarized. In
Chapter 2, the state of the art for four different research areas
is regarded, because these four areas relate to the topic of
this thesis: computer clocks and synchronization protocols,
architectures for context awareness, Quality of Context, and
human activity recognition.

12
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Following the state of the art, in Chapter 3, the four major
reasons for timing issues are analyzed: clock drift, construction
related differences, processing load and network load, and
context processing delays.

Based on the analysis of the major reasons for timing
issues and the observed typical clock offset and clock drift,
in Chapter 4 the dependency of context reasoning accuracy on
timing is evaluated.

From the analysis of timing issues and their influence on
context reasoning accuracy requirements of an architecture for
context awareness are derived. Chapter 5 summarizes these
requirements and state of the art requirements as described in
Chapter 2.

In Chapter 6 a conceptual approach toward time synchro-
nized context processing is proposed and evaluated. Also, an
alternative approach is discussed and compared to the first
approach.

Finally, in Chapter 7 a new parameter for Quality of
Context is proposed before Chapter 8 concludes the findings
of this thesis.

1.6 Publications

Parts of the work conducted for this thesis have been previ-
ously published:

• B. N. Klein, S. L. Lau, A Pirali, T. Löffler and K. David,
”DAGR - DAG Based Context Reasoning: An Architec-
ture for Context Aware Applications,” in Proceedings of
the 2008 Eighth International Workshop on Applications
and Services in Wireless Networks (ASWN ’08), Kassel,
Germany, 2008.

• B. N. Klein, S. Sigg, K. David and M. Beigl, ”DAG
Based Context Reasoning: Optimised DAG Creation,”
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in Proceedings of Workshop on Context-Systems Design,
Evaluation and Optimisation. ARCS 2010 - Architecture
of Computing Systems, Hannover, Germany, 2010.

• B. N. Klein and K. David, ”Time Locality: A Novel
Parameter for Quality of Context,” in Proceedings of
Seventh International Conference on Networked Sensing
Systems (INSS ’10), Kassel, Germany, 2010.

• B. N. Klein and K. David, Basic Approach of Timing in
Context Aware Architectures verified by concrete Advan-
tages,” in Proceedings of The 10th Annual International
Symposium on Applications and the Internet (Saint ’10),
Seoul, South Korea, 2010.

• B. N. Klein, S. L. Lau and K. David, ”Evaluation of
the Influence of Time Synchronization on Classification
Learning Based Movement Detection with Accelerom-
eters,” in Proceedings of The 11th IEEE/IPSJ Inter-
national Symposium on Applications and the Internet
(Saint ’11), Munich, Germany, 2011.
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Chapter 2

State of the art

This thesis contributes to and builds on the research of four
different areas of research in the broader field of context
awareness and mobile computing. In the following the major
results of these areas and how they relate to this thesis is
summarized.

2.1 Computer clocks and synchronization
protocols

According to [27] time is an abstraction to determine the order-
ing of events in a given timescale. The International Standard
(SI) definition of the time interval second is ”the duration of
9.192.631.770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state
of the cesium−133 atom.”

An oscillator is a generator with precise frequency within
a specified tolerance. This tolerance is expressed in parts-per-
million (ppm). A clock is an oscillator together with a counter
that records the number of electrical oscillations. The value of
this counter at any given time is called epoch, which is recorded
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as the time stamp of that epoch.
Today’s electronic clocks are based on the convenient

properties of quartz (silicon dioxide). Quartz, when properly
shaped and mounted, will oscillate if it is triggered by an
alternating current. Formed into a small tuning fork quartz
oscillates at 32.768 Hz or 215 cycles per second. Counting these
cycles allows to generate a time of day.

Most hardware clocks are based on this principle, whether
it may be a wrist watch, clock in a desktop computer or a clock
in a smart phone. Quartz clocks are sensitive to temperature,
pressure and other factors. For example the clock on Intel
’ICH’ chip based motherboards can have a loss of up to 3
seconds per day at a temperature of 60◦ C [28].

In desktop computers the hardware clock is backed by a
battery and thus runs whether the computer is on or off.
Modern operating systems almost never use the hardware
clock, instead, at boot time they initialize a software clock
or system clock with the hardware clock’s time. This system
clock is implemented as a counter that is increased with every
timer interrupt. On linux systems, the kernel measures the
time in jiffies; the size of a jiffy is determined by a kernel
constant. On i386 machines, since kernel 2.6.20, a jiffy is 4 ms
[29].

Clocks have a certain stability, which is ’how well it can
maintain a constant frequency’, and clocks have a certain
accuracy, which is ’how well its time compares with national
standards. . . . The time offset of clock i relative to clock j is the
time difference between them Tij(t) ≡ Ti(t)− Tj(t), while the
frequency offset of clock i relative to clock j is the frequency
difference between them Rij(t) ≡ Ri(t)−Rj(t).’ [27]

Since oscillators cannot maintain a precise frequency with
infinite accuracy, the offset between two clocks will always
increase over time, which is called clock drift. In order that
multiple computing devices can work together, the synchro-
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nization of their clocks is necessary for many applications,
such as context aware applications (which will be shown in
Chapter 4).

To synchronize clocks they have to be compared in time
and frequency to some reference clock and then time and
frequency have to be adjusted accordingly. There are several
approaches to synchronize clocks in computer networks to
some reference time (e.g. Coordinated Universal Time, UTC).
Which approach to use depends on network characteristics.
In the following, the most important approaches will be
discussed.

2.1.1 Network Time Protocol (NTP)

The most commonly used synchronization protocol in today’s
Internet is the Network Time Protocol (NTP). NTP really is
a set of protocols used to synchronize clocks between peers as
well as to organize and maintain a network of time servers.
NTP is built on IP and UDP.

Time servers are organized in primary and secondary
servers. Primary servers synchronize directly to external time
sources, e.g. radio clocks. Secondary time servers synchronize
with the primary server or other secondary servers. How many
hops from a primary server a secondary server is, is marked
by a stratum number. A primary server has stratum one, a
secondary server that synchronizes with a stratum one server
has stratum two.

Basically, to synchronize two peers P1 and P2 with NTP,
they exchange NTP messages containing the latest three time
stamps T1, T2 and T3. When a message arrives at P2, T1 is
the time stamp P2 has taken before sending the message to
P1, T2 and T3 are time stamps from P1. T2 is taken when
the message from P2 arrives and T3 before the message back
to P2 is send. P2 takes a fourth time stamp T4 and thus can
calculate the offset and delay as follows (see fig. 2.1).
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Figure 2.1: NTP basic delay and offset calculation.

Assume that delays from P1 to P2 and from P2 to P1 are
similar, than the delay δ and offset θ of P2 relative to P1 are
close to δ = (T2−T1)− (T3−T4) and θ = (T2−T1)+(T3−T4)

2 [27].
NTP uses several additional algorithms to secure an accu-

rate synchronization, e.g. clock-selection algorithms to select
peers that are likely to provide most accurate time. According
to [30], at least 30 % of NTP time servers maintain a time
accurate to about 30 ms, while some few servers are off up to
10 seconds.

2.1.2 Time synchronization in wireless sensor
networks

In wireless sensor networks (WSNs) time synchronization is
one of the basic middleware services. Sensor fusion as well
as other coordinated actions requires proper time synchro-
nization. While applications in WSNs often require higher
clock accuracy than possible with NTP (often in the order
of microseconds), time synchronization in WSNs has to cope
with several additional challenges. First of all, in WSNs there
commonly is a limitation of energy and other resources and
thus time synchronization protocols have to be energy efficient.
Second, in WSNs there are several nondeterministic delays
in message delivery, which affect the achievable accuracy of
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protocols like NTP. In the following chapter these nondeter-
ministic delays are decomposed.

Uncertainties in WSN message delivery

According to [31] there are the following ten sources of message
delivery delays:

1. Send time – time is takes on the sender’s side to assemble
a message and issue a send request to the MAC layer.
This time is nondeterministic because it depends on the
current processor load and the implementation of the
system call.

2. Access time – time is takes on the sender’s side to
access a transmission channel. This time is the most
nondeterministic part, depending on the technology and
current network traffic it can take up to seconds.

3. Transmission time – time it takes to actually transmit
the message. This time depends on the radio speed.

4. Propagation time – time it takes before the message
reaches the receiver when it has left the sender. This
time depends on the node distance and is in the order of
microseconds and therefore can be disregarded.

5. Reception time – time it takes for the receiver to receive
the message. It is the receiver’s correspondent of the
transmission time.

6. Receive time – time to process the message on the
receiver’s side and notify the applications. It is the
receiver’s correspondent of the send time.

7. Interrupt handling time – time between the raising of an
interrupt by the radio chip and the controller responding
to it. This time contributes to the reception time.
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Figure 2.2: Decomposition of the message delivery delay over
a wireless link [31].

8. Encoding time – time it takes the radio chip on the
sender’s side to encode and transform a message to radio
waves. This time contributes to the transmission time.

9. Decoding time – time on the receiver’s radio chip to
decode a radio wave to a binary representation of the
message. This time contributes to the reception time.

10. Byte alignment time – time it takes to shift the message
bytes on the receivers side in case the radio chip cannot
capture the byte alignment. This time contributes to the
reception time.

Figure 2.2 shows how the message delivery delay over a
wireless link is composed of the first six sources of delay.
Sources 7 - 10 are part of the transmission and reception.
Table 2.1 shows the typical magnitude and the distribution
of this delays measured on the Mica21 platform by Maróti et
al. [31].

In the following, three common approaches to time synchro-
nization in WSNs that strive to minimize the errors incurred
by the ten uncertainties are discussed.

Reference Broadcast Synchronization

The Reference Broadcast Synchronization (RBS) [18] is a
protocol that is not intended to do sender-receiver time

1http://www.xbow.com/Products/Wireless_Sensor_Networks.htm
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Time Magnitude Distribution Depending on

Send and Re-
ceive

0–100 ms non-
deterministic

processor load

Access 10–500 ms non-
deterministic

channel con-
tention

Transmission
/ Reception

10–20 ms deterministic message
length

Propagation < 1µs for dis-
tances up to
300 meters

deterministic distance

Interrupt
Handling

< 5µs in most
cases, but can
be as high as
30 µs

non-
deterministic

interrupts be-
ing disables

Encoding and
Decoding

100–200 µs, <
2 µs variance

deterministic radio chipset
and settings

Byte
Alignment

0–400 µs deterministic can be calcu-
lated

Table 2.1: Sources of message delivery delay on the Mica2
platform, according to [31].
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synchronization to synchronize clocks to an external reference
time source (but can be extended to synchronize clocks to an
external reference time source). Instead RBS enables receiver-
receiver synchronization. That is RBS synchronizes a set of
receivers with one another to achieve a relative synchronization
of the receivers’ clocks.

In RBS nodes synchronize with their neighbors by period-
ically sending synchronization messages. These messages are
send utilizing the physical layer broadcast and do not contain
explicit time stamps. Instead receivers use the arrival time of
the periodical messages as reference points.

By using the physical layer’s broadcast capability, RBS
eliminates two of the error sources described in Chapter 2.1.2,
the access time and the send time. Thus, the main influencing
factors on synchronization accuracy that can be achieved using
RBS are propagation time and receive time. The basic scheme
RBS uses to estimate clock offset of two receivers i and j is
[18]:

1. A node broadcasts a reference message to receivers i and
j.

2. Receivers i and j record their local time upon arrival of
the reference message, ti and tj .

3. Receivers i and j exchange their locally observed arrival
times and thus calculate their relative clock offsets θi =
ti − tj .

To compensate for the remaining uncertainties, in RBS
receivers calculate an average offset from multiple reference
messages. To estimate the clock drift instead of averaging the
offsets, linear regression can be used.

The main limitation of RBS is its dependency on the
availability of physical layer broadcast. The main strength
of RBS is that it does not require low level OS access and
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therefore is applicable on a wide range of hardware. The
authors of [18] claim RBS to be two times more accurate than
NTP.

Timing-sync Protocol for Sensor Networks

Compared to RBS, the Timing-sync Protocol for Sensor
Networks (TPSN) [32] is a sender-receiver synchronization
protocol that is used to synchronize a multi-hop WSN to an
external reference time source. TPSN is less computational
complex than NTP.

TPSN creates and maintains a hierarchical topology in the
network. Every node in this structure is assigned a level. The
node connected to an external reference time source acts as
the root node and has level 0. For other nodes the level is
defined as the length of the path from that node to the root
node.

Once TPSN has established this structure the synchroniza-
tion phase begins. Starting from synchronizing nodes of level
1 with the root node, nodes of level i are synchronized with
nodes of level i− 1.

The synchronization of two nodes is a sender-receiver
synchronization, calculating offsets by message exchange and
estimating delays from the round trip time in the same way as
NTP does (see chapter 2.1.1).

TPSN uses time stamping at MAC layer and in [32] the
authors argue, that this way the uncertainties are reduced to
the transmission time. TPSN has an advantage over RBS
if there is a close coupling between radio and application
layer (as there is for many small sensor nodes), because then
instrumenting the MAC layer eliminates the uncertainties at
the sender side, like RBS, but still has the benefit of round
trip time measurements to estimate the propagation time. The
shortcoming of TPSN is its lack of clock drift estimation and
compensation.
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Send Access Trans-
mission

Pro-
pagation

(incl. en-
coding)

RBS No No No No
TPSN No No Yes (esti-

mating)
Yes (esti-
mating)

FTSP No No Yes (esti-
mating)

Yes (esti-
mating)

Table 2.2: Error sources before a synchronization message
reaches the receiver side. The table shows which protocol is
prone to which message delay reason. If a protocol is prone to a
message delay reason, the table shows if the protocol estimates
the delay.

Flooding Time Synchronization Protocol

The Flooding Time Synchronization Protocol (FTSP) [31] is
a sender-receiver synchronization protocol, like TPSN, that
utilizes periodic flooding of synchronization messages and a
dynamically updated topology. It uses MAC layer time stamp-
ing like TPSN and additional error correction mechanisms
including clock drift estimation.

Table 2.2 and Table 2.3 show which protocol is affected by
which uncertainties. In contrast to TPSB and RBS, FTSP
does not suffer from time stamping uncertainties at the MAC
layer, that is jitter of interrupt handling and decoding time
(see Chapter 2.1.2).

This is achieved by using radio broadcast like RBS, but
including an explicit time stamp, which is the estimated global
time at transmission of a given byte. The receivers record the
local time of the reception of that given byte. The jitter is
reduced by recording a time stamp after each byte boundary
of a packet after the SYNC bytes on sender and receiver side.
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Reception

Interrupt Decoding Byte Receive
handling alignment

RBS Yes Yes Yes No
TPSN Yes Yes Yes No
FTSP Yes (esti-

mating)
Yes (esti-
mating)

No No

Table 2.3: Error sources when the signal arrives at the receiver.
The table shows which protocol is prone to which message
delay reason. If a protocol is prone to a message delay reason,
the table shows if the protocol estimates the delay.

This time stamps than are normalized and the minimum is
taken as estimate of the interrupt handling time error. The
average of these normalized and interrupt handling time error
corrected time stamps is used to reduce the jitter of the
encoding and the decoding time. Linear regression is used
to estimate clock drift.

In Chapter 3 the applicability of the discussed synchro-
nization protocols will be analyzed. But first we will give
an overview of architectures for context awareness in order
to analyze if and how time synchronization is done in these
architectures.

2.2 Architectures for context awareness

The architectures discussed in this chapter, as all software ar-
chitectures, try to fulfill a set of functional and non-functional
requirements. Functional requirements are requirements di-
rectly related to the function of the software. Non-functional
requirements ”constitute the justifications of design decisions
and constrain the way in which the required functionality may
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be realized” [33].
In [33] it is noted that there are different well known

classification schemes for non-functional requirements, but
that even these schemes are inconsistent. Out of the long
list of non-functional requirements mentioned in the literature
the following are especially important for context aware
architectures:

• Performance – The ability to fulfill the system’s task fast
and uninterrupted.

• Scalability – The ability to fulfill the system’s task
without reduced performance even if the number of
fulfilled tasks simultaneously increases.

• Reliability – The ability to correctly fulfill the system’s
tasks with stable performance.

• Maintainability – The possibility to change and extend
the system while using relatively few development re-
sources.

• Reusability – The possibility to reuse the system or parts
of it without the need to change large portions of the
system.

Even if these requirements are especially important for
context aware architectures, they are not specific for context
aware architectures. Nevertheless, the authors of the works
discussed in this chapter tend to characterize these non-
functional requirements as specific for context aware archi-
tectures and therefore refuse to reuse the solutions provided
by established middleware approaches and communication
protocols.

The authors of context aware architectures seem to agree on
a set of challenges that make the fulfillment of the functional
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and non-functional requirements difficult. These challenges
are rooted in the dynamic, heterogeneous and distributed
nature of context aware applications:

• Changing connectivity – Context aware applications
usually involve several sensors, either located in the
user’s environment or integrated in the user’s personal
devices, like the user’s smart phone. To not limit the
user’s mobility and to achieve the invisibility of ubiq-
uitous computing, at least the user’s personal devices,
if not all involved devices, have to use some kind of
radio connection to communicate with other devices.
Loss of connection is an inherent characteristic of radio
connections as well as changing bandwidth.

• Dynamic resource availability – Directly dependent on
the changing connectivity and the user’s mobility, envi-
ronmental devices visible to the user’s personal devices
will appear and disappear all the time.

• Multitude of different sensor interfaces – Sensor devices
will be produced by numerous vendors for a multitude
of purposes. It cannot be assumed that all these devices
follow some standard interface definition or protocol.

• Different sensor characteristics – In the same way as the
multitude of sensors will have different interfaces, they
will have different characteristics, like different accuracy,
different sampling frequency, different reliability, and so
forth.

• Limited resources – The goal of almost invisible but
ubiquitous device availability makes it inevitable that
device size is limited and therefore the processing power
and storage capacity will be limited. Furthermore,
mobile devices are dependent on batteries and that will
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limit the processing power even more, as well as it will
limit communication bandwidth.

From these challenges functional requirements are arising.
As for the non-functional requirements, the functional require-
ments are addressed with specific solutions by most authors,
rather than using established technology. The functional
requirements are:

• Encapsulation of heterogeneous sensors/ transparency
– The two challenges different sensor interfaces and
different sensor characteristics demand the central func-
tionality of architectures for context awareness, the en-
capsulation of the sensor interfaces. Once encapsulated
and then providing a uniform interface, the sensors
can be easily used by application developers, even in
graphical development approaches.

• Communication model – The challenge of changing
connectivity needs to be addressed by a scalable commu-
nication model with sufficient performance. Generally,
depending on the application’s needs and the sensor’s
characteristics, either publish/subscribe or polling ap-
proaches are necessary.

• Storage and History – Seldom a single sensor value
is of any significance to an application, normally the
distribution and trend of the values is used to get more
significant information. Therefore, context values have
to be stored and the storage has to provide fast and
scalable access to the history of the values. For the
prediction of future context the history is needed to
extract patterns and trends.

• Resource discovery – The challenge dynamic resource
availability has to be addressed by providing a resource
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discovery mechanism, which allows querying for available
devices.

• Context processing/ data flow – To enable the calcula-
tion of high-level context, the architecture approach has
to offer a way to define a data flow of context processing
steps, where several sensors are aggregated. Facing the
challenge of limited resources it should be possible to
distribute the processing over the available resources.
The architecture should handle this in a transparent way.

• Rule engine – In order that applications don’t have to
hard code how to react to context changes, it is beneficial
to define rules that define what actions to trigger when
specified conditions are met. These rules can have simple
forms, like first-order logic, and be user defined, or else
can be learned using machine learning techniques. In
any case the task of the rule engine is to observe the
context sources and evaluate corresponding to the rules.

• Security – Since context aware applications are envi-
sioned to be ubiquitous and thus will steadily affect our
everyday life, it is important that these applications are
secure and cannot easily be manipulated by third parties.

• Privacy – Context data is by definition of high interest
to the user and usually taken from the user’s devices or
from devices in the user’s proximity. Thus the data is
the user’s private data and has to be protected.

In the following, the important context aware architecture
approaches are discussed.

2.2.1 The Context Toolkit

Dey et. al. proposed the Context Toolkit [6, 2] as one of
the first middleware approaches to enable the development of
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context aware applications. Their approach is inspired by the
widget concept known from GUI toolkits and thus they foresee
the delivery of building blocks to build context aware systems
more easily.

The Context Toolkit’s main goals where to overcome the
difficulties imposed by the distributed nature of context aware
applications and the heterogeneity of the used sensors. In
detail in [34] four major difficulties are identified:

1. Context information may be acquired from unconven-
tional sensors. While in 1999 the authors claimed GPS
to be an unconventional sensor, today there are still
new unconventional sensors occurring. For developers of
context aware applications a middleware should abstract
from the specifics of those sensors and enable the use in a
standard way, i.e. a well know application programming
interface (API).

2. Raw sensor information has to be abstracted to make
sense. That is, for example an acceleration sensor
reading may not have any meaning to the developer at
all, while a high level context like ’running’ can be much
more easy to use.

3. Context may be acquired from multiple distributed and
heterogeneous sources. Distribution and heterogeneity
are a major challenge for every software system and thus
it is a basic middleware service to cope with both.

4. Environmental changes must be detected in real time
and the history of context is valuable.

The widget concept has three main benefits that help to
cope with the difficulties of context acquisition:

1. Hiding specifics/ complexity of used sensors.
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2. Managing details of the abstraction of context informa-
tion.

3. Providing reusable building blocks that can be combined
like GUI widgets to compose context sources.

A context widget, as a building block, allows applications
to register to be notified in case of a context change. Widgets
are built from their more basic components that can also be
combined: generators, interpreters and servers. Generators
are the components really acquiring the context from a sensor,
interpreters abstract and filter context, and servers aggregate
and store context information.

The Context Toolkit achieves platform independence by
using a communication model entirely based on HTTP and
XML message exchange. Applications can both subscribe to
a widget and poll a widget. If the subscription mechanism is
used, applications can specify conditions to prevent unneces-
sary notifications.

Even though the need for real time context information is
acknowledged by Dey et. al. [6, 2], there is no architectural
support to enable time synchronization or any other facilities
needed to enable real time processing of context.

2.2.2 CARISMA

The Context-Aware Reflective Middleware System for Mobile
Applications (CARISMA) [35] is a middleware approach that
enables the development of mobile applications that react
to context changes. However, the context considered by
CARISMA is limited to resource availability, e.g. memory,
bandwidth and battery power. Compared to the Context
Toolkit, the context is not necessary for the applications to
operate, it is merely influencing the way an application is
carrying out a specific task. For example depending on the
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available bandwidth a message is transmitted as text, voice or
video.

Generally, it is the purpose of a middleware to hide these
specifics to the application (transparency). Carpa et. al. argue
that an application may have valuable information and thus
CARISMA exposes an abstraction of the middleware state
to the application and enable the application to change the
middleware behaviour through reflection.

There is no mention of time synchronization support for
the distributed mobile devices CARISMA handles.

2.2.3 MiddleWhere

MiddleWhere [36] is a middleware approach that enables
ubiquitous computing applications to incorporate location in-
formation. Thus, in MiddleWhere the only context considered
is the location of a user or object. MiddleWhere specifically
supports the fusion of location information from different
sources that may have different resolution and confidence. As
none of the fused sensors is capable of giving an absolute
accurate location information, the location information is
associated with a probability value.

MiddleWhere has the following properties:

1. Fusion of multiple location sensing technologies. Mid-
dleWhere fuses data from different sensor sources with
different accuracy and resolution. This information may
be conflicting, thus MiddleWhere calculates a spatial
probability distribution.

2. Handling, temporal nature of location information. Lo-
cation information is only valuable if it is fresh. Mid-
dleWhere therefore reduces the confidence in location
information as the information gets older.
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3. Hybrid location Model. MiddleWhere supports coordi-
nate as well as symbolic location models.

4. Push and Pull interaction. Applications can actively
pull for location information as well as to register to be
informed in case of location changes.

5. Region based and object based locations. MiddleWhere
can keep track of the location of objects and which
objects are located in a particular region.

6. World model. MiddleWhere keeps a spatial database to
model the physical world.

7. Spatial relationships between objects. MiddleWhere
can express whether an object is in close proximity to
another object or if an object is collocated with another
object.

Even if Ranganathan et. al. recognize the temporal
nature of location information, MiddleWhere’s only tribute
to that is the reduction of confidence in location information
over time. There is no mechanism that ensures correct time
information and handles conflicts originating from different
and inaccurate time stamps. However, all error and conflict
resolving calculations proposed in [36] rely on correct time
information.

2.2.4 Solar

Chen et. al. propose Solar [22] as a general purpose platform
for handling of context processing, that is, not only a special
context like location is considered but all kinds of context
information. Solar foresees raw sensor data to be processed
to get high level context. In particular context data can be
filtered, aggregated, and abstracted.
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As a middleware Solar provides middleware services to col-
lect raw data from a multitude of sensors, process the raw data
and disseminate the high level context to many applications.
Solar strives to enable scalable, secure, and privacy preserving
context processing. Therefore, the communication model of
Solar is based on the subscription of context event streams.
Solar provides an attribute based naming scheme for event
sources to enable the discovery of event sources.

Event sources can be sensors as well as what Solar calls
operators, which can filter, aggregate, and further process
context and have a similar interface as sensor sources. Thus,
event streams can be combined in a flexible way to process
context in several steps and reuse operators. One event stream
that may be subscribed by an application is the leaf of a tree
structure of operators.

To not only reuse the operators at design time, but also save
processing power, Solar can combine the tree structures into
an acyclic directed graph to reuse tree parts that otherwise will
be needed twice. Applications can define tree structures in an
XML based language and Solar will instantiate the needed tree
to provide the context event stream to the application.

In a Solar deployment there are two kinds of devices, a
star and multiple planets. The star handles the deployment of
trees to the planets and the subscriptions of the applications.
A planet will run multiple operators. It is the task of the star
to distribute the operators equally to the planets and thereby
consider the available processor load and bandwidth. Sensors
and applications themselves are not part of the Solar system.
How time synchronization is handled by Solar is not mentioned
by the authors.

2.2.5 Gaia

The Gaia middleware is a middleware approach to enable
the application development for smart homes [37], where
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applications have to cope with a distributed, heterogeneous
environment of networked devices that may appear and leave
in a highly dynamic way. Therefore, Gaia is based on the
principle structure of operating systems. It consists of a
core, that handles the dynamic life cycle of the other Gaia
components, and on top of that core there are the following
basic services:

• Spaces Repository Service. A repository that stores
information about the devices and software in a physical
space (e.g. a room).

• Event Manager. The Event Manager provides a pub-
lish/subscribe communication infrastructure.

• Context File System. A storage for context information
that has the hierarchical organization of file systems.

• Presence Service. This service discovers devices that are
present in a physical space.

• Context Service. This service allows applications to
query for context information.

Additionally to the basic components Gaia provides an
application framework that is envisioned to ease the devel-
opment of applications for smart spaces. The framework
is based on the Model-View-Controller pattern and provides
mobility, adaption and dynamic binding of applications. The
distributed communication is handled using CORBA. There is
no time synchronization service described for Gaia.

2.2.6 Sentient Object Model

Biegel and Cahill present the Sentient Object Model in [38].
The Sentient Object Model is a programming model and
a framework to enable the development of context aware
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applications. The authors emphasize the close coupling of
objects, which they claim is beneficial in dynamic mobile
environments, and the uniform interface of the so called
sentient objects.

A sentient object is an entity encapsulating the following
functionality:

• Abstraction of sensors and actuators. The developer is
relieved of the error prone handling of low level APIs of
various hardware devices.

• Probabilistic sensor fusion mechanism including filtering
of sensor events. The sensor fusion is based on Bayesian
Networks to model uncertainties and dependencies be-
tween sensors.

• Rule based reasoning. The developer can specify event-
condition-action rules and the inference engine can
identify relevant context information out of a context
hierarchy and thus can be more efficient.

Thus, a sentient object is an autonomic object that is aware
of its context and can act proactively upon it. Sentient objects
can communicate with one another using an event based
mechanism. Since sentient objects provide a uniform interface,
whether they are sensors or actuators or are aggregating other
sentient objects, they can be easily combined using a visual
interface. All event filtering and rule based reasoning is hidden
to the other objects and handled by an internal control logic.
Time synchronization is not regarded.

2.2.7 Hydrogen

The Hydrogen Context framework [39] is an architectural
approach intended to enable the development specifically on
mobile devices such as smart phones. Hofer et al. argue
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that mobile devices pose the following problems that need
to be addressed by context frameworks, additionally to the
general purpose of context frameworks like separation of
concerns, encapsulation of sensor APIs and interoperability
in a heterogeneous environment:

• Limitation of network connections. Mobile devices
may have limited bandwidth available, e.g. due to
higher traffic costs, and connections may suffer frequent
disconnects.

• Limited computing power. While development of pro-
cessing power and memory capacity of mobile devices
seems to follow Moore’s law they are still not as powerful
as desktop computers or servers. Additionally, mobile
devices are limited by available battery power, which
directly influences the processing power.

Based on these limitations of mobile devices Hofer et al.
formulated five requirements they see for a context framework:

1. Lightweightness. The architecture has to use the avail-
able resources on mobile devices economically.

2. Extensibility. In case of Hyderogen extensibility means
the ability to connect to remote sensor sources.

3. Robustness. The architecture has to be robust against
disconnects.

4. Meta-Information. Context information, especially from
remote sensors, has to be enriched with information
about the location and precision of the sensor.

5. Context-Sharing. The architecture has to allow the
sharing of sensor data with remote devices.
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Hydrogen addresses these requirements with a three-layered
architecture. The basic layer, called the adaptor layer, handles
the retrieval of sensor data from different sensors. This sensor
data is then handed to the second layer, the management layer,
which basically stores the context and provides access to the
data for local and remote applications. Local applications
reside in the top layer, the application layer. The applications
can query contexts from the management layer or subscribe
to context information. Again, time synchronization is not
regarded.

2.2.8 RCSM

The Reconfigurable Context-Sensitive Middleware (RCSM)
[25] is a middleware approach for pervasive computing appli-
cations. Yau et al. found two main characteristics of perva-
sive computing applications, context sensitivity and ad hoc
communication. RCSM addresses these two characteristics
and additionally supports the development of applications that
have both characteristics at the same time.

In general one basic feature of middleware is transparency,
which is to hide specifics from the applications, e.g. a
middleware for database access hides the specifics of accessing
databases from different vendors. In contrast, pervasive
applications need a balance between transparency and context
awareness. It is a major goal of RCSM to provide this balance.
Therefore, RCSM has the following main features:

• Object oriented development framework. RCSM pro-
vides an object oriented framework like middleware ap-
proaches for programming language independent inter-
process communication do (e.g. CORBA). Objects of
RCSM consist of two parts, the object implementing the
context independent functionality in any programming
language and a context sensitive interface. The context
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sensitive interface is specified in a meta language and
compiled by RCSM into a runtime container object for
the context independent object. The meta language
can be used to specify the contexts that should be
considered (subscribed to) and which actions (functions
of the context independent object) should be triggered.

• Object request broker. RCMS’s object request broker
handles ad hoc communication and service discovery. It
provides platform independent interfaces that hide the
intricacies of specific transport protocols. Generally it
follows the concepts of CORBA.

The gathering of context from sensors sources, further
processing of context, and time synchronization is not covered
by RCSM.

2.2.9 Software framework of Henricksen and In-
dulska

Henricksen and Indulska [23] presented a software framework
for context aware applications along with a context modeling
language and a way to formally express user preferences. This
software framework supports two programming models. The
first supported programming model is branching, which is
based on the user preference specifications. Applications select
actions based on ratings assigned to a set of alternatives by
the preference model. The second programming model is trig-
gering, which basically is a publish/subscribe communication
model.

The software framework that enables the two programming
models is divided into six layers from bottom to top:

1. Context gathering layer. On this layer the context
from sensors is gathered and processed to higher level
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representations. This layer is connected over an event
notification scheme with sensors and the layer on top.

2. Context reception layer. This layer provides a bidirec-
tional mapping from the gathered context to a context
model.

3. Context management layer. This layer is a repository of
context models; it can be distributed.

4. Query layer. This layer provides an interface for appli-
cations and the adaption layer to query the management
layer for context information.

5. Adaption layer. The adaption layer is a repository
of preferences and event trigger specifications. It also
evaluates the specifications using the query layer.

6. Application layer. This layer provides a toolkit to
applications that enables the use of the branching and
the triggering programming models.

The specifics of the context gathering layer, and thus time
stamp retrieval, are not detailed in [23].

2.2.10 CASS

In [40] Fahy and Clarke present the Context-Awareness sub-
structure (CASS) middleware. CASS’s main design goals are
the support of high-level context inference and the separation
of context inference and context based behaviors from applica-
tion code. To enable the handling of a large number of sensor
nodes and to overcome the memory and processor constraints
of mobile devices. CASS is a server based approach. This
server based approach comes at the cost of the need for
permanent network connections to the server. Fahy and
Clarke state that they solve this problem with local caching,
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however that would lead to old and maybe deprecated context
information on the mobile devices.

The requirements Fahy and Clarke identify for CASS are:

• Supporting a large number of sensors and other context
sources.

• Storing the context history.

• Supporting context interpretation and higher-level ab-
straction.

• Event based communication model.

• Extensibility.

• Transparent use of distributed sources.

• Separation of context inference and context based be-
haviors from application code.

On the CASS server there is a database to store the context
as well as user data, application data and domain knowledge.
This database based approach offers the possibility to use SQL
to query context information. Additionally, the database also
stores rules and the context interests of applications.

Also on the server there is an inference engine that uses
forward caching to infer new facts from known facts and rules.
The rules are contained in a knowledge base and define action
goals that should be triggered when the specified high-level
contexts occur. Time synchronization is not regarded by the
authors.

2.2.11 SOCAM

The Service-oriented Context-Aware Middleware (SOCAM)
[41] is a service-oriented middleware approach based on
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OSGi, which is built for rapid prototyping of mobile context-
aware applications. In SOCAM contexts are represented as
predicates in OWL. The components of SOCAM are:

• Context Providers that encapsulate the APIs of the het-
erogeneous sensors. Context providers have to register
at a service registry, so that they can be discovery by
other services. Context providers publish events in form
of OWL descriptions when the contexts are changing.

• Context Interpreters are special context providers that
are providing high-level contexts. They contain a
knowledge base and use different context reasoners, as
for example RDFS reasoners or OWL reasoners. The
knowledge base provides an API to let others services
query, add, delete, and modify contexts.

• Service Location Service where context providers and
context interpreters can register and then can be found
by applications.

• Context-Aware Mobile Services are applications that can
either query context providers for context or register to
an event notification scheme to be informed of context
changes. Users can specify a set of rules in first order
logic that express when to trigger a services action.

SOCAM, unlike the most other approaches, achieves mid-
dleware functionality that is common in distributed environ-
ments, like network communication abstraction, by using the
OSGi functionality and concentrates on the context-aware
specific middleware services, however, without regarding time
synchronization.
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2.2.12 Software framework of Korpipää et al.

In [42] Korpipää et al. present a context management frame-
work that is targeted at dealing with noise, faulty connections,
drift, miscalibration, wear and tear and other factors causing
uncertainties when fusing sensor data. As a communication
model a blackboard approach is used. On top of the Symbian
OS Korpipää et al. implemented a middleware with four main
components:

• Context Manager that is a central server component,
even if it runs locally on the mobile device, where the
other components act as clients. The context manager
is blackboard based and stores all context information.
The clients can either query for context, subscribe to low
level contexts or use high-level contexts.

• Resource Servers connect to sensors and other context
sources and post the contexts to the context manager’s
blackboard. The resource server’s task is to provide
context abstractions to higher levels that are useful and
have low enough frequency to not stress the system.
There are four phases of context processing taking place
in the resource servers. First, measuring the raw data.
Second, pre-processing a set of data from a time interval
and calculate generic features. Third, extracting specific
features and fourth, quantizing and semantic labeling of
the data. The quantizing and semantic labeling is done
using fuzzy sets or crisp limits.

• Context Recognition Services can register at the context
manager to share high-level contexts.

• Applications that are served with context information in
an event based manner.

43



2 State of the art

The approach uses naïve Bayes classifiers as a supervised
learning approach to classify contexts because of the com-
putational efficient context classification that is robust to
uncertainties. Korpipää et al. recognize the importance of
time information to relate context events and also the potential
influence of drift, but except for the claim that the naïve Bayes
classifiers are robust, they do not provide any detail if they
foresee any time synchronization.

2.2.13 CAPNET

The Context-Aware Middleware for Mobile Multimedia Ap-
plications (CAPNET) [43] combines middleware services for
context-awareness and middleware services that support mul-
timedia services, such as storage, capturing, rendering and
adaption of media for different resource limited mobile devices.
Along with several requirements for the multimedia capabil-
ities, CAPNET fulfills the following requirements of context-
aware middlewares:

• Support for a variety of sensor devices.

• Support for distribution of sensors

• Transparency of context processing

• Context storage

• Control of context data flow

The CAPNET middleware layer is located on top of a
layer of existing technologies that offer remote procedure calls,
database services and service orientation. The CAPNET mid-
dleware includes components for service discovery, component
management, user interface, multimedia and context. The
task of the context component is to abstract the different
sensor device interfaces to a uniform interface, to store the
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context and to deliver context information by means of an
event notification scheme. Time synchronization, again, is not
mentioned.

None of the approaches discussed in this Chapter regards
time synchronization, therefore, in this thesis we analyze
the relevance of time synchronization for context awareness
and propose an approach towards time synchronization for
context awareness. Additionally, adding information about
time synchronization into quality of context is proposed in
Chapter 7.

2.3 Quality of context

An integral feature of context is its uncertainty. Sensors are
subject to failure and noise, also processing of sensor data
is a process involving approximation and that may cause
ambiguity. Thus, it is important for applications receiving
the context data to also receive meta information additional
to the actual value.

Gray and Salber propose a notion of quality of context
(QoC) [44]. QoC, in their definition, is an information about
the quality that consists out of six single parameters:

• Coverage – The amount or range of data that can be
sensed, e.g. for a temperature sensor this will be the
temperature range like −10◦ C - 50◦ C.

• Resolution – The smallest perceivable element, e.g. for
a temperature sensor the resolution may be 0.5◦ C.

• Accuracy – The range of deviation, e.g. for a tempera-
ture sensor the accuracy may be ±0.1◦ C.

• Repeatability – How likely will the sensor deliver the
same measurement, if the physical circumstances are
exactly the same.
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• Frequency – The sample rate.

• Timeliness – The temporal accuracy; range of potential
delay of delivery.

Later, Buchholz et al. proposed a slightly different defini-
tion where they name the, in their eyes, five most important
parameters but emphasize that there may be many more
parameters, depending on the specific context [45]. The five
parameters named by Buchholz et al. are:

• Precision – The precision is the same as accuracy in the
definition by Gray and Salber.

• Probability of Correctness – Denotes the probability that
a single context information is correct, based on previous
behavior of the sensor hardware. This parameter is
related to the repeatability parameter in the definition
by Gray and Salber.

• Trust-worthiness – Like the probability of correctness
this parameter describes how likely it is that a context
information is correct, but in this case based on the
assessment of the context provider’s personal trust-
worthiness or potential harmful tendency.

• Resolution – The resolution is the same as in the
definition by Gray and Salber.

• Up-to-dateness – This parameter describes how old a
context information is. That is different from timeliness
in the definition by Gray and Salber. Timeliness
describes the range of potential delay before a context
source delivers a context information, up-to-dateness
how old a single context value actually is.
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Additional to the refinement of the parameter definition,
Buchholz et al. argue different reasons why QoC is needed.
They see a need to use QoC in service level agreements
additionally to QoS if context information delivery is the
purpose of the service. If context aware applications have a
choice between different context sources to acquire the desired
context, they should be able to base their choice on QoC
parameters. Also the composition of multiple context sources
to generate high-level context information is dependent on
the QoC of the fused context sources. Caching of context
information may affect the QoC, especially parameters like
up-to-dateness or timeliness.

Users may use QoC information to rate to quality of recom-
mendations based on contexts with a certain QoC. Also they
can express privacy policies using QoC. For example they can
allow access to their location with reduced accuracy/precision
and less up-to-date.

Contrary to the notion of Buchholz et al., that there may be
many more QoC parameters depending on the context source,
Zimmer defines only four parameters that should apply to all
contexts in general [46]:

• Spatial Origin – That is the location of the sensors
source.

• Age – Like up-to-dateness this parameter denotes how
old a context information is and additionally how old the
oldest context that was used to derive that information
is.

• Reliability – That is the same as probability of correct-
ness. Zimmer states that it may be hard to calculate
the reliability and proposes to use fuzzy-rules defined by
experts.

• Degree of Relationship – This parameter expresses how
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a context information is related to other contexts, e.g.
because the other contexts are fused to derive this
context or the other contexts partly use the same sensor
sources.

Sheikh et al. rename up-to-dateness to freshness and also
add another two parameters to the list of QoC parameters [47]:

• Spatial resolution – That is the precision of the spatial
origin.

• Temporal resolution – That is the precision of the
time stamp attached to the context information. The
definition of timeliness by Gray and Salber covers this
definition but extends it to the delivery delay, which
causes ambiguity in Gray and Salber’s definition [44].

Sheikh et al. argue three reasons for the use of QoC.
First, they consider QoC information an additional cause for
application adaptation. Second, they find QoC useful to
enable higher middleware efficiency, e.g. if a sensor with lower
computational cost provides lower, but still sufficient QoC a
costly sensor may be replaced. Last, they see a use for QoC
parameters in the expression of privacy [47].

Manzoor et al. give a more precise definition to actually
calculate some of the QoC parameters defined by the other
authors [48]. They define up-to-dateness with respect to a
maximum lifetime of a context information and decrease the
up-to-dateness value when the actual lifetime reaches near the
maximum. Also they define trust-worthiness with respect to
the space between sensor and measured real world entity.

Kim and Lee propose to express accuracy as whether a
value is in a confidence interval that is statistically estimated
[49]. However, this approach seems more suited to calculate
the probability of correctness than to express the accuracy/-
precision.
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In [50] Krause and Hochstatter observe that there is still
a challenge to model the QoC parameters, especially because
there is ’an endless range of possibilities’ to express the QoC
parameters. They also note that QoC parameters do not
only apply to context information derived from a single sensor
source but also to aggregated contexts. Furthermore, they
argue that QoC and the worth of a context information for a
particular application may be two things and therefore they
extend the definition of QoC to:

Quality of Context (QoC) is any inherent informa-
tion that describes context information and can be
used to determine the worth of the information for
a specific application. This includes information
about the provisioning process the information has
undergone (history, age), but not estimations about
future provisioning steps it might run through. [50]

2.4 Human activity recognition

Human activity recognition is used as a sample context aware
application in this thesis in order to evaluate the influence
of time synchronization on reasoning accuracy. Therefore,
here we will outline the state of the art in human activity
recognition.

More than ten years ago research on activity recognition
began using audio and video data [51, 52]. Later, the use of
body worn sensors became popular [53, 54, 55, 56, 57].

Depending on the number of used sensors and used sensor
devices as well as on the heterogeneity of the devices, the
problem of time synchronization becomes more relevant:

• Single sensor – If only one sensor is used to recognize
an activity, the relative ordering provided by the times-
tamps from the sensor device is sufficient and no time
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synchronization is necessary. An example for this class of
activity recognition approaches is using the acceleration
sensor in a single smart phone [58, 59, 52, 57].

If training data is labelled manually using a second
device the synchronization of the sensor device and the
labeling device is important to mark the transition point
between two activities.

• Single device – Most activity recognition approaches are
using a single device equipped with multiple sensors, e.g.
[60, 55, 61, 51, 62]. The relative ordering provided by
the device time is also sufficient in that case. If a second
labeling device is used to establish ground truth the time
synchronization may be an issue.

The different sensors attached to the device may however
have different sampling frequencies and for some sensors
it may take longer to detect a physical fact than for other
sensors (timeliness). In that case sampling time may
need coordination.

• Homogeneous devices – Approaches using multiple sen-
sor devices of the same type, attached to the human body
at different positions, in a wireless sensor network (WSN)
have to secure time synchronization between the sensor
devices. This will be discussed in detail in Chapter 3.

Even if the accuracy of time synchronization available for
wireless sensor networks (see chapter 2.1.2) is sufficient,
to the best of our knowledge there is no clue how time
synchronization is achieved in the published research
work in this field, e.g. [56] or [54].

• Heterogeneous devices – The vision of ubiquitous com-
puting encompasses the use of a multitude of sensors
in the user’s proximity and personal devices of a user,
like the smart phone, together. These devices may use
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different communication technologies to connect to each
other. It cannot be assumed that all involved devices
offer sufficient ways to synchronize their clocks or have
clocks of sufficient accuracy at all. In Chapter 3 the
issues caused by unsynchronized clocks will be discussed.

Today most modern smart phones are equipped with
accelerometers and several groups published results showing
good reasoning accuracy using these accelerometers [58, 59,
63].

Throughout this thesis acceleration sensors like the ones
in smart phones and their fusion with other sensor data
will be used in experimental settings to show various time
synchronization related issues.

So far, none of the published result considers the influence
of time synchronization and the clock accuracy of smart
phones.
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Chapter 3

Reasons for timing issues

In Chapter 2.1 the principle of electronic clocks is described
along with time synchronization protocols. In the following
reasons why clocks involved in the acquisition of context may
not be synchronized or why time stamps may not be accurate
are discussed. Some of these reasons can be addressed using
the known time synchronization protocols, hitherto the other
reasons are not addressed.

To analyze the issues that may be caused by unsynchro-
nized clocks we make the following definitions:

Definition 4. The time tx is the time of the event ex recorded
by the device sensing event ex.

Definition 5. Given Definition 4, the clock cx is the clock
from which tx is taken. The offset of the clocks cx from clock
cy is tcx,cyoffset.

Definition 6. Given Definition 5, when there is no offset two
events e1 and e2 occur at the same time if ∆t ≥ |t1 − t2|. ∆t
depends on the applications need for accuracy.

If there is an offset, an event e1 occurs before e2 if t1 +∆t+
tc1,c2offset < t2.
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Definition 6 defines a relative temporal ordering of events.
It defines if an event happens before or after another event and
if two events happen at the same time. The order is relative
and not absolute because it is defined relative to the involved
clocks, whether these clocks are synchronized to any external
source providing an absolute time or not.

3.1 Clock drift and possibility of clock
adjustment

As already explained in Chapter 2.1, electronic clocks are
based on the properties of quartz (silicon dioxide). Quartz,
formed into a small tuning fork oscillates at 32.768 Hz or 215

cycles per second. Counting these cycles allows to generate a
time of day.

Oscillators are sensitive to temperature, pressure and other
factors, e.g the precision of the form of the tuning fork. Thus
oscillators cannot maintain a precise frequency with infinite
accuracy, the offset between two clocks will always increase
over time, which is called clock drift.

Clocks have a certain stability, which is ’how well it can
maintain a constant frequency’, and clocks have a certain
accuracy, which is ’how well its time compares with national
standards. . . . The time offset of clock i relative to clock j
is the time difference between them Tij(t) ≡ Ti(t) − Tj(t),
while the frequency offset of clock i relative to clock j is the
frequency difference between them Rij(t) ≡ Ri(t)−Rj(t)’ [27].
In other words, because of insufficient clock stability, the clock
will drift and thus the clock’s accuracy will decrease.

Wireless sensor networks (WSNs) are often associated with
low cost sensor devices that may cause device quality related
and other problems, e.g. unstable oscillators, limited energy
and limited communication bandwidth [16]. While there
are several clock synchronization approaches prosed that can
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archive sufficient accuracy [16, 17, 18, 19, 21, 20], context
aware architectures often combine data from several sensors,
that are not part of the same WSN, and thus are likely to be
not synchronized at all.

From this follows that it cannot be assumed that all
clocks involved have sufficient accuracy and thus it cannot
be assumed that time stamps are accurate. In fact time
stamps must be regarded as potentially wrong, as long as it
is not known what provisions are made to ensure correct time
stamps.

Assuming the involved sensor devices provide some means
to adjust the clock, the algorithms described in Chapter 2.1
can synchronize the device clocks. However, many applications
use sensors integrated in modern smart phones, e.g. human
movement detections applications make use of acceleration
sensors in smart phones. Unfortunately, up to now, it is not
possible to use the time synchronization algorithms on smart
phones for the following reasons:

• It is not possible to set the time programmatically
neither using JavaME nor on Android and iOS.

• Connecting to Internet time servers requires the user to
allow the use of a connection, normally opening a user
dialog on the phone.

• The user simply may not want his phone’s clock time to
be set.

If smart phone clocks cannot be synchronized, is it save to
use time stamps from smart phones? First of all, in CDMA
networks time is distributed to the phones, in GSM that is
not the case. While the Network Identity and Time Zone
(NITZ) specification is part of the GSM specification [64],
for example in Germany only one of the four major network
providers supports this feature (tested on Nokia E71 phone).
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time.hrz.uni-kassel.de: stratum 1,
offset 0.000671, synch distance 0.002717,
refid ’DCFp’

Figure 3.1: Output of ntptrace of the time server.

Also, at least the smart phones we have tested (see Table 3.1)
require the user to activate the setting on the phone or allow
the user to disable it. Setting the clock by hand will not be
more accurate than to the nearest second. To verify that
smart phone clocks have a significant offset and are drifting
we carried out the following experiment.

3.1.1 Experimental setup

To test the offset and drift of smart phone clocks, the clocks
are compared to the clock of a desktop computer. Therefore,
the desktop computer’s clock is synchronized using NTP to
time.hrz.uni-kassel.de. This time server is a stratum
1 NTP time server located in the same university network
than the desktop computer (see Figure 3.1). The server
uses the DCF77 radio signal as reference source that receives
the time from the ’Physikalisch-Technische Bundesanstalt’ in
Braunschweig, Germany [65]. This national institute uses
cesium clocks to provide the legal time in Germany.

The clock of the desktop computer has, according to the
ntptime command, an offset of -2.611µs to the time server
and the estimated error is 78µs (maximum error 133961µs).

On the smart phones a program implemented in Java (Java
Micro Edition) is used. This program sends a time stamp every
0.31 seconds (≈ 32,25Hz) to a server program running on the
desktop computer (retrieved on the smart phone using Java’s
System.currentTimeMillis() function). When the desktop
computer receives the time stamp the offset is calculated, thus

56



3 Reasons for timing issues

the network sending time is not estimated and subtracted,
but can safely be expected to be in the order of milliseconds
not seconds. The average ping time of 50 pings to the
desktop computer utilizing the slowest connection used in the
experiments is 57.451ms. Two different connections are used
in the experiments, WLAN with the access point connected
over Gigabit-Ethernet to the desktop computer, and UMTS.
The UMTS/GSM network provider used has the ’Network
Identity and Time Zone’ (NITZ) extension enabled in his
network.

A total of 17 experiments with 9 different smart phone
models are carried out. In every experiment 60,000 samples are
taken. The smart phones are taken from their users without
adjusting the time before the experiment.

3.1.2 Results

Table 3.1 summarizes the results. It can be seen that in the
best case the mean offset is 2.01 seconds, in the worst case for
two phones it is roughly two minutes (if the two phones that
are one hour off and the one that is one year off are neglected,
because it can be assumed the users of these phones never
tried to set the time right). The Nokia and Samsung models
have a variance of more than 19 seconds. The Sony Ericsson
model and the one from LG have a variance below 5 seconds.
That difference can be seen when the figures Figure 3.6 and
Figure 3.8 or Figure 3.2 and Figure 3.4 are compared; the
models that showed greater variance can be identified by the
greater spikes in the graphs. The figures Figure 3.7, Figure 3.9,
Figure 3.3, and Figure 3.5 show histograms of the time offset
for four chosen phone models.

All smart phone model’s clocks that are tested drift. The
figures Figure 3.6, Figure 3.8, Figure 3.2, and Figure 3.4
show a red line calculated with a least squares polynomial
fit algorithm. The gradient of this red line estimates the clock
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model connection variance
(sec)

mean (sec) gradient
(sec/hour)

LG-KM900 WLAN 4.61 3735.36 0.48
Nokia5800d-
1

WLAN 1943.10 -6.04 -13.77

NokiaE71-1 UMTS 11530.60 -6.12 -1.05
NokiaE71-1 UMTS 95.82 -4.39 -1.39
NokiaE71-1 UMTS 37944.95 -7.77 -3.96
NokiaE71-1 WLAN 123.87 -2.01 -0.81
NokiaE71-1 UMTS 30.17 78.55 -1.45
NokiaE71-1 UMTS 44.02 2.81 -1.30
NokiaE71-1 UMTS 686.19 8.41 -1.52
NokiaE72-1 WLAN 520.02 -23.90 -2.47
NokiaE72-1 WLAN 456.29 -24.57 -3.81
NokiaN95 WLAN 600.75 44.56 -9.96
NokiaN97-1 WLAN 200.19 118.73 -0.11
NokiaN97-4 WLAN 19.60 -31536037.36 -1.01
S8000 WLAN 4578.00 3674.08 0.43
SonyEricsson-
U1i

WLAN 1.45 4.99 0.27

SonyEricsson-
U1i

WLAN 0.36 22.01 0.02

Table 3.1: Overview of time differences and clock drift on the
tested smart phones.

drift. One phone model drifts 13.77 seconds/hour (worst case).
Two phone models show a drift below 1 second/hour. The
rest of the tested phones drifted between 1 second/hour and
10 second/hour.

Two times the Nokia E71 shows a significant higher variance
than in the other experiments. These times the phone
used a UMTS connection and was carried around during
the experiments; during all other experiments the phone was
left unmoved on a desk. Thus the greater variance can be
attributed to network delays. The drift observed in the two
experiments with moving phone still fits in with the other
experiments.
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Figure 3.2: Time offset desktop computer synchronized with
NTP to Sony Ericsson U1i (Satio).
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Figure 3.3: Histogram of time offset desktop computer syn-
chronized with NTP to Sony Ericsson U1i (Satio).
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Figure 3.4: Time offset desktop computer synchronized with
NTP to Nokia E71-1.
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Figure 3.5: Histogram of time offset desktop computer syn-
chronized with NTP to Nokia E71-1.
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Figure 3.6: Time offset desktop computer synchronized with
NTP to Nokia N97-4.
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Figure 3.7: Histogram of time offset desktop computer syn-
chronized with NTP to Nokia N97-4.
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Figure 3.8: Time offset desktop computer synchronized with
NTP to LG-KM900 (Arena).
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Figure 3.9: Histogram of time offset desktop computer syn-
chronized with NTP to LG-KM900 (Arena).
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3.1.3 Discussion of results

The experimental results show that due to the reasons dis-
cussed in this chapter, it cannot be safely assumed that clocks
of smart phones are synchronized to the nearest second. The
users of the phone may not set the clock to correct time at
all and if they try to, it will be impossible to set it to the
exact millisecond. Even the phones tested that use the UMTS
connection where the network provider disseminated the time
through the network are not significantly more accurate (best
case 2 seconds off). The observed clock drift in the order of
seconds per hour makes it worse, even if the clock is correct
to the millisecond at one point in time, it takes only hours to
drift off. In Chapter 4 the effect of an offset in that order will
be discussed in detail. The offset generally is an important
information without which the relative temporal ordering of
events is not known (see Definition 6).

3.2 Construction related differences

Even if we assume that the clocks of the used sensor devices
are synchronized, there are reasons, why the devices will not
deliver sensor data all at the same frequency. Furthermore
sample data that is to be aggregated, will not be sampled at
the same time by all devices. The ’same time’ here is used
to refer to a defined period of time wherein all time stamps
are regarded as if they are the same, depending on the specific
application’s need for accuracy (see Definition 6).

Some sensors may take more time than others to sense a
change in the physical environment. To this phenomenon from
now on is referred to as sensor delay.

Definition 7. The time trx is the time when event ex really
occurred; thus trx ≤ tx. The sensor delay is defined as txdelay =
tx − trx.
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Definition 8. Given Definition 7, when there is no offset two
events e1 and e2 occur at the same time if ∆t ≥ |tr1− tr2|. ∆t
depends on the applications need for accuracy.

If there is an offset an event e1 occurs before e2 if tr1 +∆t+
tc1,c2offset < tr2.

The time an event really occurs is trx = tx − txdelay.

The sensor delay is caused by the fact that sensors have dif-
ferent construction-related physical capabilities. In dynamic
environments where several sources of sensor data may be
dynamically discovered and aggregated, it is not safe to assume
that all sensors have the same physical capabilities even if they
are of the same general type. Furthermore, sensors of different
types clearly have different physical capabilities. For example
temperature sensors are known to suffer from thermal inertia
and therefore the sensor delay is relatively big. However,
these construction related delays are deterministic and thus
the sensor delay can be taken into account when calculating
the relative temporal order of events.

3.3 Processing load of sensor devices and
network sending time

The sensor nodes have additional tasks to fulfill. These
additional tasks also consume time that cannot be used
to retrieve sensor values. For example smart phones are
often equipped with accelerometer sensors and other sensors,
however they clearly have additional processor load. Normally,
there is no way to influence the scheduling algorithms on the
device in order to ensure measurements at a fixed frequency.

Additionally, it depends on the operating system how fast a
sensor can be accessed, e.g. on the current implementation of
the Android OS it is not possible to specify an exact sampling
frequency, instead one can choose between four constants for
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the sensor delay (fastest, game, normal, and ui) 1. It is not
specified to which sampling frequency a constant refers to and
it can vary on different devices and software versions.

The additional processor load and the operating system
constraints thus add another time delta to the overall time
from the real occurrence of an event until it is passed to the
application. The time delay caused by processing load and
operating system specific constraints is nondeterministic and
hence it cannot simply be used in the calculation of the relative
temporal ordering. Also, the maximal possible sampling
frequency is constrained by the processing load, caused by
the sampling itself and the additional tasks, in relation to the
processing power. For example, the SunSpot sensor node used
in the experiments in Chapter 4 is not able to sample faster
than 320Hz when there is now other processing load, but if
every single samples is to be send separately to a second device
that additional processing load reduces the maximal sampling
frequency to 250Hz.

If the application that should receive the event is not
running on the device that has sensed the event, on top of
sensor delay and the time it takes for the operating system
to access the sensor, the time it takes to send the event
notification to the application’s device is to be taken into
account. This time is also nondeterministic.

Definition 9. The time it takes from the real occurrence of
an event until it reaches the application ∆tnotify is composed of
the sensor delay txdelay, the processing delay txprocessing and the
network delay txnetwork. ∆tnotify = txdelay + txprocessing + txnetwork

1http://developer.android.com/reference/android/hardware/
SensorManager.html
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3.4 Context processing delays

The common understanding of context reasoning is that sensor
data is to be processed in several steps and that it is necessary
to infer high level contexts out of the raw data [15, 22, 23,
24, 25]. Figure 3.10 shows the typical data flow of context
data from sensor to high-level context. These pre-processing
and abstraction steps all consume processor capacity and in
distributed scenarios are foreseen to be carried out on different
devices with respect to the device capabilities, which consumes
time while sending data over the network. Therefore, the time
it takes before sensor data reaches the application is not only
determined by the sensor itself, but also by the time it takes to
process the data. This time is the sum of the time consumed
by the pre-processing and abstraction steps and the network
delays and can vary from value to value and sensor to sensor.

The time every pre-processing and abstraction step takes
is influenced by the CPU load and the scheduler and thus
is non-deterministic. The network delays are influenced by
several factors, such as the bandwidth and thus also are non-
deterministic. The sensor’s sampling frequency may be faster
than the slowest pre-processing or abstraction step, conse-
quently the rate at which the samples reaches the application
may be slower than the sensor’s maximal sampling frequency.

In Chapter 4 the issues caused by the nondeterminism of the
processing load of sensor devices and the context processing
delays will be analyzed and their effect on context reasoning
accuracy will be tested.
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Figure 3.10: Typical data flow of sensor data. Retrieved from
sensor S1 the date is pre-processed in several steps (P1 . . . Pn)
and afterwards to gain high-level context it is processed in
order to abstract it (A1 . . . An). The abstraction steps may
fuse data from several sensors or other abstraction steps.
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Chapter 4

Analysis of the influence
of time synchronization
on reasoning accuracy

Understanding a user’s situation is an essential feature of
context aware applications, which are an important part of
the vision of ubiquitous computing [1, 6]. In many such
applications data of several sensors is aggregated to gain an
understanding of the user’s situation, often called context
reasoning, which is commonly done based on rules (e.g. ’if
temperatureSensor > 20◦ C and lightSensor > 10.000 lx
than summer day’). We differentiate between user defined
rules that are simple rules defined by humans, and classifica-
tion learning, which uses labelled training data for machine
learning of classifiers and thus is able to do more complex
reasoning.

In the following chapter the influence of time synchro-
nization on reasoning accuracy for reasoning based on user
defined rule will be investigated. Afterwards, in Chapter 4.2
the influence of time synchronization on context reasoning
based on classification learning algorithms will be analyzed
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and evaluated for six commonly used algorithms.

4.1 Influence on accuracy for user defined
rules

User defined rules are rules that describe the reasoning logic
in context reasoning processes and that are manually defined
by a user or domain expert. These rules are of an ’if .. then
..’ form where the ’if’ part can contain the operators ’<’, ’>’,
’=’, ’≥’, ’≤’, ’and’, and ’or’. These operators are used on
the sensor values (e.g. ’if temperatureSensor > 20◦ C and
lightSensor > 10.000 lx than summer day’).

For user defined rules the synchronization of sensor clocks
is important to infer a relative ordering of sensor readings.
Figure 4.1 shows a schematic sketch of a moving person. In the
top sketch the sensors attached to the thighs have synchronized
clocks, in the lower sketch the clocks are out of sync. It is
possible to infer the movement of the person from the sensor
orientation, if the clocks are in sync, if the clocks are not in
sync it is no longer possible to infer the movement. To infer
the movement it has to be clear if two sensor readings happen
at the same time or one after another (see Definition 6). In
the sketch the time frame ∆t, in which two time stamps have
to be in to be regarded as happening at the same time, is
marked with dotted blue lines. The size of ∆t is application
specific and for human movement detection is accepted to be
determined by a maximum frequency of 10 Hz [61].

In a scenario of a smart meeting room it is beneficial
to know whether a person is standing, walking around or
sitting. This would, for example, enable to infer (along with
other parameters) if a meeting has started and which person
currently is doing a presentation at the white board.

To detect whether a person is standing, walking around or
sitting, we use accelerometers placed in a person’s pockets.

70



4 Analysis of the influence of time synchronization on
reasoning accuracy

Figure 4.1: Schematic sketch of a moving person. The red
boxes show the sensor’s orientations when the sensors are
attached at the person’s thighs. The dotted blue lines mark
the begin of a new time frame. In the top sketch the sensor’s
clocks are in sync and in the bottom sketch not.
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Accelerometers

Figure 4.2: Positioning of accelerometers in the pockets (left).
Standing person with upright accelerometers (middle). Sitting
person with accelerometers rotated 90 ◦ (right).

Many smart devices today have integrated accelerometers.
One accelerometer in a pocket on the side of each leg is
sufficient (Fig. 4.2), as further shown in this chapter. The
three-axis accelerometer allows to calculate the angle of the
upper leg relative to the earth gravity. Thus, it can be
distinguished between three general situations; if both legs are
pointing in the direction of the earth gravitation, a person is
probably standing, if both legs are angled a person is probably
sitting and if both legs’ angles are alternating, a person is
walking.

To exactly distinguish the three situations, the time syn-
chronization is important. To detect alternating or simul-
taneous movements the temporal order of measurements is
clearly important. Human movement happens in a frequency
range from 0–10 Hz [61]. This means to classify values as
happening simultaneously, their time stamps have to differ less
than 0.1 sec. There are several possible reasons why sensors
could not be synchronized to that extent.

One reason could be that the two used devices (e.g. one
smart phone and one special sensor device) have different
physical characteristics. If both devices are theoretically able
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to deliver measurements with the same frequency, it is still
possible that the devices are busy with other tasks. Another
common reason for delayed measurement delivery is the need
to further process the data and send it over several network
hops. In that case, processor load and network delays lead to
unpredictable delays. For a complete discussion of the reasons
see Chapter 3

Generally, aggregated sensor data should always be cap-
tured around the same time (constrained by the sensor’s
characteristics and the application’s needs), otherwise the
data may be inconsistent. None the less, existing approaches
for context aware systems typically simply assume that the
time when the different sensor data is captured does not
matter for the calculations. A common approach is to
use publish/subscribe communication (e.g. [14]) to inform
interested parts of a context aware application whenever a
value changes (see Chapter 2.2). For slowly changing values
this may not be an issue, but for fast changing sensor data it
is critical to maintain correct temporal relations.

There are several sensor types whose values change much
more frequently and for which a single sensor value is of no
meaning, but the change over time is of importance (e.g.
video, audio, vibration and acceleration [62]). For these
kind of sensors a publish/subscribe based architecture may
not be the best solution, because the frequent change will
result in constant streams of change events. Particularly, the
time constraints for these kinds of sensors are much more
tight; if a sensor’s values change every second, tolerating a
time difference of two seconds is not feasible. If these time
constraints are not fulfilled, the data may be useless to some
applications or otherwise less valuable.

In the following the timing issues raised by these differences
are analyzed. When it is sensed whether a person is standing
or sitting, to be certain of the position of both thighs, it is
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Figure 4.3: The first 10 samples of S1 (bottom) and S2 (top).

necessary to get the information from both accelerometers
at the same time and to allow only a small difference ∆t.
Otherwise it will be unclear if a differing angle is caused by
the time delay of one sensor, or by really different angles, like
if a person only lifts one leg. To ensure this is relatively
simple when both sensors use identical sampling rates and
are synchronized. If the two sensors however are not able to
sample at identical rates, maybe because they use different
technologies, the problem becomes harder.

Without loss of generality, we assume the first sensor S1

is the faster one and samples at a rate R1 of one sample per
second and S2 is slower by factor x and thus has sampling
rate R2 = xR1. Two samples s1 from S1 and s2 from S2 have
fitting timestamps if the time ts1, that is the time when s1 is
measured, differs only ∆t from ts2. For example if x is 1.1 and
S1 samples once per second then S2 samples every 1.1 second.
This results in two time series of samples: Ts1 = (1, 2, 3, 4, ...)
and Ts2 = (1.1, 2.2, 3.3, 4.4, ...). If ∆t = 0.2 then only some
ts1 ∈ Ts1 are fitting. Figure 4.3 shows the first 10 samples of
both sensors and marks the fitting timestamps.

To calculate to percentage pS1 of fitting timestamps in Ts1,
first the percentage pS2 of samples in Ts2 that have fitting
timestamps has to be calculated. In Ts2 for a ∆t = 0.2
only sample times where the first decimal place is 0, 1, 2, 8
or 9 are fitting because in Ts1 there are only 0′s as decimal
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places. This, out of the first 100 samples, is exactly the case
if ts1 ∈ (1, 2, 8, 9, 10, 11, 12, 18, 19, 20, ..., 90, 91, 92, 98, 99, 100).
From this follows that only 40 of 100 timestamps from S2 are
fitting with a timestamp from S1. When 100 samples from S1

are taken, there are only 100/x samples taken from S2, out of
which 0.4 have fitting timestamps. Thus pS1 is 100

1.1 0.4 ≈ 36%

The percentage of samples of the slower sensor which have
fitting timestamps with a sample from the other sensor pS2

depends on x, with x = R2
R1

, and the allowed time difference
∆t. The first decimal place of a sample s2 with sample time ts2
has to be equal or less than the allowed difference ∆t or equal
or greater 1 −∆t. If T fit

s2 is the set of fitting sample times in
Ts2, T

fit
s2 ⊆ Ts2, than ∀ts2(∃ts1 ∈ Ts1∧ |ts2− ts1| ≤ ∆t⇒ ts2 ∈

T fit
s2 ). Furthermore there is a ts1 ∈ Ts1 with |ts2 − ts1| ≤ ∆t

when (ts2 mod x) ≤ ∆t ∨ (1− (ts2 mod x)) ≤ ∆t.
If y is the first decimal place of x (x = z + y

10 , z ∈ N, y ∈
N,N = (1, ..., 9)) than out of 100 samples there are ps2 =
10|M | (M ⊆ N, n

10 ≤ ∆t ⇒ n ∈ M) fitting timestamps. To
calculate |M | = f(∆t, y) use the following equation (1):

f(∆t, y) =


2(10∆t) + 1 y ∈ (1, 3, 7, 9)

2(10∆t− (10∆t mod 2)) + 2 y ∈ (2, 4, 6, 8)

5 y = 5

(4.1)
Table 4.1 shows the result of f(M,y) for y ∈ (1, 2, ..., 9).
For uneven y in the progression (1y mod 10, ..., 10y

mod 10) every number ∈ (1, 2, ..., 10) appears exactly once.
For even y only even numbers appear in the progression
and therefore only even increases of ∆t can add more fitting
timestamps. The multiplier 2 in Equation 4.1 is because
adding ∆t can lead to fitting timestamps as well as subtracting
∆t. Fig. 4.5 shows the percentage of fitting timestamps in
Ts2 and Ts1. The percentage of fitting timestamps in Ts1
depends on x, because during the time 100 samples for Ts1
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∆t y = even y = uneven x = 0.5
(x 6= 0.5)

0.1 20 30 50
0.2 60 50 50
0.3 60 70 50
0.4 100 90 50
0.5 100 100 100

Table 4.1: Percentage of fitting timestamps from the slower
sensor.

are sampled, there are only 100
x samples in Ts2 of which only

ps2 have fitting timestamps with a sample from Ts1 (4.2).

pS1 =
100

x
pS2 (4.2)

As the figures Figure 4.4, Figure 4.5, Figure 4.6, and
Figure 4.7 show, even if the first sensor is not twice as fast
as the second sensor (1 < x < 2), in the worst case (∆t = 0.1)
only ≈ 18.2% of samples from the first sensor have fitting
timestamps from the second sensors. With x ≥ 2 it gets
even worse (Fig. 4.7). The other ≈ 82.8% of the samples
from sensor one are a potential waste of energy and network
bandwidth. If these samples are used by a reasoning algorithm
anyway, the accuracy may decrease! For applications that
require the use of two sensors and define a maximum time
difference between two samples, one from each sensor, a way to
avoid the unnecessary sampling would save energy and network
bandwidth.

In the example of sensing the angles of both thighs of a
person, when one sensor indicates that a leg is angled and
the other sensor shows the opposite, the time difference is
important to decide if the differing measurements are caused
by differing sampling rates or by the person really lifting only
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Figure 4.4: Shows % of fitting timestamps for uneven first
decimal place of x in relation to ∆t (1 < x < 2).
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Figure 4.5: Shows % of fitting timestamps for even first
decimal place of x (except x = 1.5) in relation to ∆t (1 <
x < 2).

77



4 Analysis of the influence of time synchronization on
reasoning accuracy

1 2 3 4
10−1∆t ·sec

30

40

50

60
%

 o
f 

m
a
tc

h
in

g
 s

a
m

p
le

s

x=1.5, Ts1

x=5, Ts2

Figure 4.6: Shows % of fitting timestamps for factor x = 1.5
in relation to ∆t.
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one leg instead of sitting down.

4.2 Influence on accuracy for classifica-
tion learning

Context reasoning based on classification learning contrary
to reasoning based on human user defined rules, offers the
benefit of saving the work of rule definition and can reveal
relationship between context and sensor values that may not
be evident to the human user. Therefore, it is an often used
approach in context reasoning. However, learned classifiers
are dependent on proper training data and are prone to over
fitting [66]. In the following the effect of time synchronization
of the sensors producing the training data and the test data
will be evaluated.

To evaluate the influence of time synchronization on reason-
ing accuracy of classification learning algorithms the following
scenario, in which user activity is classified based on accelera-
tion data, is used.

In a scenario where context aware applications are to
support office workers, it is beneficial to know the current
activity of a user, e.g. if it can be detected if a user is currently
using his desktop computer, the power saving modes of this
computer can be adjusted accordingly. To access the situation
of a user sitting in front of and working with his computer, we
attached one SunSPOT sensor node per arm, equipped with a
three-axis accelerometer, to the user’s wrists (see Figure. 4.8).
The accelerometer data is used to distinguish five different
activities: typing on the keyboard, hand writing, moving the
mouse, using the phone, and drinking.

The experiments show that it is possible to distinguish the
five activities with reasonably good accuracy (82.09 % in the
worst case) when the sensor data timestamps are synchronized
(Figure 4.9, synchronization is achieved by manually aligning
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Figure 4.8: Positioning of sensor nodes with accelerometers,
one per wrist.

the data after the recording). However for the several reasons
discussed in Chapter 3 it cannot be assumed that the clocks
of the two sensors are in sync.

Especially important for base-level classification algorithms
is the fact that it is unlikely that the time difference between
sensors remains stable over time (e.g. due to clock drift
and skew or changing network and CPU load) and therefore
classifier performance may change over time. Experiments
described in Chapter 4.2.1 show that the accuracy is highly
dependent on the time shift between sensors after recording
the training data. Chapter 4.2.2 discuses the results of
the experimental evaluation and Chapter 4.3 concludes the
findings.
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4.2.1 Experimental setup

The experiment setup consists of two SunSPOTs devices
[15] placed at both wrists of the user (Figure 4.8). The
acceleration data is measured at a sampling rate of 32Hz and
the performed activities are annotated using an additional
application running on a Nokia Internet Tablet N800. The
collected data from all three devices is then combined and
synchronized manually to prepare the training data needed
for activity recognition. The recognition system uses classifi-
cation learning algorithms to build the activity models from
the training data, based on the approach used in previous
investigations on activity recognition using smart phones [59].
The built model is integrated in the recognition system as the
designated classifier.

In the training phase, the preparation of the classifiers
requires the transformation of raw acceleration data into
selected features to be used as attributes. For the recognition
needed in the experiment, we have selected three time domain
(mean, variance and standard deviation) and two frequency
domain (energy and information entropy of the fast Fourier
transform) transformations. The test data is also transformed
into all five features to be used as input data for the desired
recognition using the built classifiers during the recognition
phase. The evaluations are made based on the results of the
obtained recognitions for both SunSPOT devices. For the
purpose of comparison, we have also repeated the evaluations
with the sampling rate 16Hz and different combinations of
window lengths as well as overlapping percentages used for
the preparation of the features (see Table 4.2).

Based on the obtained training data from both SunSPOTS,
classifiers are build using selected base-level classification
algorithms. These algorithms are Bayesian network (BN),
K-nearest neighbor (IBk), decision tree (J48), rule-based
classifier (JRip), naïve Bayes (NB) and sequential mini-
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Number of instances per data set

Freq. Window
size

Overlap 20100805 20100809 20100811 20100812

16 32 0.50 1192 2186 1504 713
16 32 0.75 2384 4372 3008 1425
16 64 0.50 595 1092 751 356
16 64 0.75 1190 2184 1502 711
32 64 0.50 1189 2179 1502 712
32 64 0.75 2377 4358 3003 1424
32 128 0.50 594 1089 750 355
32 128 0.75 1187 2177 1500 710

Table 4.2: All algorithms were evaluated with eight different
parameter combinations for the parameters frequency [Hz],
window size [samples] and overlap [samples]. The table shows
the resulting number of instances in the training data for every
one of the four recorded data sets (’20100805’, ’20100809’,
’20100811’ and ’20100812’).

mal optimization (SMO). They are frequently used in vari-
ous accelerometer-base activity recognition investigations and
have shown relatively good recognition accuracies [59, 67, 57].

Unfortunately, there is no way to predict the accuracy of
a certain classification learning algorithm used on a certain
data set other than actually testing it with the data set
using techniques like cross-validation [66]. The choice of a
classification learning algorithm therefore can only be done by
testing the different algorithms. In previous investigations, the
above classification algorithms have shown accuracies higher
than 90 %, particularly the IBk, J48 and JRip classifiers [59].
In this investigation, we want to investigate the influence of
the time shift on the recognition process. Therefore, the
data of the second sensor is shifted respectively 25, 50, 75,
100, 125, 150, 175 and 200 samples to create un-synchronized
test data and to test this data with classifiers built from the
synchronized training data.

82



4 Analysis of the influence of time synchronization on
reasoning accuracy

4.2.2 Results
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Figure 4.9: Overview of the average performance of all six
classifiers

Theoretically, if a classifier is built using training data from
both sensor devices without any time shift during the training
phase, a delay of sensor data delivery from one of the sensor
devices during the recognition phase causes changes in the
aggregated data needed for the recognition. If the delay shift
is big enough, the built classifiers will fail in producing the
expected recognition and accuracy. Experiments show that for
all six algorithms used (see Chapter 4.2.1) the accuracy goes
down even for a small time shift of 25 samples (25 samples ÷
32 samples/sec ≈ 0.78125 sec). For the maximum tested time
shift of 200 samples accuracy goes down by 15 percentage
points in the worst case (Table 4.3, see the figures Figure 4.16
– Figure 4.39 which show the results as box plots, where the
blue box extends from the lower to upper quartile values of
the data, with a red line at the median.). An overview of the
average performance of all algorithms is shown in Figure 4.9.
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Figure 4.10: Average performance of Bayesian Network classi-
fier (BN)
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Figure 4.11: Average performance of K-nearest neighbour
classifier (IBk)
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Figure 4.12: Average performance of decision tree classifier
(J48)
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Figure 4.13: Average performance of rule based classifier
(JRip)
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Figure 4.14: Average performance of naïve Bayes classifier
(NB)
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Figure 4.15: Average performance of sequential minimal
optimization (SMO)
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Figure 4.16: Performance of Bayesian Network classifier (BN),
data set 20100809
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Figure 4.17: Performance of K-nearest neighbour classifier
(IBk), data set 20100809
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Figure 4.18: Performance of decision tree classifier (J48), data
set 20100809
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Figure 4.19: Performance of rule based classifier (JRip), data
set 20100809

88



4 Analysis of the influence of time synchronization on
reasoning accuracy

0 25 50 75 100 125 150 175 200
¢t in number of samples

60

65

70

75

80

85

90

95

100

%
 o

f 
co

rr
e
ct

ly
 c

la
ss

if
ie

d
 i

n
st

a
n

ce
s

Figure 4.20: Performance of naïve Bayes classifier (NB), data
set 20100809
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Figure 4.21: Performance of SMO classifier, data set 20100809
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Figure 4.22: Performance of Bayesian Network classifier (BN),
data set 20100805
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Figure 4.23: Performance of K-nearest neighbour classifier
(IBk), data set 20100805
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Figure 4.24: Performance of decision tree classifier (J48), data
set 20100805

0 25 50 75 100 125 150 175 200
¢t in number of samples

60

65

70

75

80

85

90

95

100

%
 o

f 
co

rr
e
ct

ly
 c

la
ss

if
ie

d
 i

n
st

a
n

ce
s

Figure 4.25: Performance of rule based classifier (JRip), data
set 20100805
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Figure 4.26: Performance of naïve Bayes classifier (NB), data
set 20100805
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Figure 4.27: Performance of SMO classifier, data set 20100805
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Figure 4.28: Performance of Bayesian Network classifier (BN),
data set 20100811
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Figure 4.29: Performance of K-nearest neighbour classifier
(IBk), data set 20100811

93



4 Analysis of the influence of time synchronization on
reasoning accuracy

0 25 50 75 100 125 150 175 200
¢t in number of samples

60

65

70

75

80

85

90

95

100

%
 o

f 
co

rr
e
ct

ly
 c

la
ss

if
ie

d
 i

n
st

a
n

ce
s

Figure 4.30: Performance of decision tree classifier (J48), data
set 20100811

0 25 50 75 100 125 150 175 200
¢t in number of samples

60

65

70

75

80

85

90

95

100

%
 o

f 
co

rr
e
ct

ly
 c

la
ss

if
ie

d
 i

n
st

a
n

ce
s

Figure 4.31: Performance of rule based classifier (JRip), data
set 20100811
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Figure 4.32: Performance of naïve Bayes classifier (NB), data
set 20100811
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Figure 4.33: Performance of SMO classifier, data set 20100811
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Figure 4.34: Performance of Bayesian Network classifier (BN),
data set 20100812

0 25 50 75 100 125 150 175 200
¢t in number of samples

60

65

70

75

80

85

90

95

100

%
 o

f 
co

rr
e
ct

ly
 c

la
ss

if
ie

d
 i

n
st

a
n

ce
s

Figure 4.35: Performance of K-nearest neighbour classifier
(IBk), data set 20100812
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Figure 4.36: Performance of decision tree classifier (J48), data
set 20100812
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Figure 4.37: Performance of rule based classifier (JRip), data
set 20100812
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Figure 4.38: Performance of naïve Bayes classifier (NB), data
set 20100812
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Figure 4.39: Performance of SMO classifier, data set 20100812
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Time shift in number of samples

Algo-
rithm

0 25 50 75 100 125 150 175 200

Bayes-
Net

87.57 86.85 86.68 86.10 85.53 84.56 83.57 82.77 81.78

IBk 100.00 96.53 93.04 91.47 90.47 89.56 87.64 86.34 85.71

J48 97.60 93.76 90.99 89.32 88.12 86.93 85.59 84.37 83.62

JRip 93.38 91.13 89.42 88.05 87.03 85.99 84.92 83.98 83.16

Naive-
Bayes

82.09 81.87 81.10 80.88 80.49 80.09 79.54 78.81 78.23

SMO 86.48 86.17 85.60 84.80 84.36 83.59 82.89 82.22 81.73

Table 4.3: Average correctly classified instances in % for
different algorithms in relation to the time shift. The average is
calculated out of four data sets with a total length of 1:33 hours
and eight parameter settings per algorithm (see Table 4.2).

The IBk classifier is an instance-based classifier. It com-
pares the distance (usually Euclidean distance) between in-
stances in the training data to find the nearest neighbor for the
desired recognition. Therefore, it performs 100 % accurate on
the un-shifted data but performs on average 4.47 percentage
points worse for a shift of 25 samples and 14.29 percentage
points worse for a 200 samples shift (Figure 4.11, note that in
the un-shifted case training and test data is the same).

Both BN and NB are classifiers that use probability be-
tween the attributes to classify the activity. Figures 4.10 and
4.14 show that the accuracy of both classifiers also suffer from
time shifts. NB’s accuracy only goes down by 3.86 percentage
points in the worst case, but also has the worst accuracy of all
tested algorithms even with no time shift. NB’s accuracy with
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no time shift is less than the worst case accuracy of IBk, J48
and JRip.

The decision tree classifier J48 is suitable for data instances
that are describable with attribute-value pairs. It uses
a divide-and-conquer strategy to discover the relationship
between the attributes and the respective activities. The
rule-based classifier JRip uses ”if-else” relationships for the
recognition. Both J48 and JRip classifiers are able to produce
descriptive models. Both achieve high accuracy in case of no
time shift, with J48 slightly better and both suffer from time
shifts (Figures 4.12 and 4.13) but are in the worst case still
better than BN, NB and SMO.

The SMO algorithm is an optimized method to apply
the support vector machine (SVM) method on the training
data for classification. A SVM classifier finds hyperplanes in
linearly separable data, where a hyperplane is defined as a
linear function that separates the data into two groups in space
(in the experiments a polynomial kernel is used). It performs
only slightly better than NB, with 86.48 % accuracy for no
time shift and going down 4.75 percentage points in the worst
case (Figure 4.15).

All in all, the results show that classification learning
algorithms may not be susceptible to time synchronization as
long as the timing differences remain stable, but are vulnerable
if there is a time offset between the involved sensor nodes
after the training phase, which may be due to the clock drift
observed in Chapter 3. This shows that, for classification
learning algorithms, architectural support for handling time
synchronization in context aware application can be beneficial,
as shown for user defined rule based reasoning (Chapter 4.1).
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4.3 Conclusion

The results show that for user defined rule based reasoning,
if the sampled data is not synchronized it may lead to
inconsistencies and therefore bad reasoning accuracy. We
also evaluated the influence of time synchronization on clas-
sification learning algorithms. The evaluation shows that
classification learning algorithms may be less susceptible to
timing differences if timing differences remain stable after
the training phase, but are as vulnerable to changes in time
synchronization as user defined rule based reasoning is.

Of course not all applications of context awareness are
affected by the observed problems. In order to be affected,
an application has to have at least some of the following
characteristics:

• Data of more than one sensor is aggregated.

• The order of events is important.

• Single sensor readings are of no meaning, rather change
over time is observed.

• The sensed information is changing twice as fast as or
faster than the changes can be sensed.

We believe that not all but many context aware applications
have these characteristics, e.g. recognition of movements using
multiple sensors, as we have shown, suffers from insufficient
time synchronization. For these applications the identified
influence factors on time synchronization analyzed in Chap-
ter 3 will influence the accuracy of reasoning approaches. The
results support the claim that architectures for context aware
applications need to support ways of handling the uncertainties
caused by insufficient time synchronization or ways to avoid
insufficient time synchronization.
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Chapter 5

Requirements of an
architecture for context
awareness

In Chapter 2.2 an overview of the state of the art of context
aware architectures is given. From the literature the following
characteristics of context aware applications that have to be
taken into account during the design of an architecture, are
subtracted:

• Changing connectivity

• Dynamic resource availability

• Multitude of different sensor interfaces

• Different sensor characteristics

• Limited resources

For a detailed description of these characteristics see Chap-
ter 2.2. Most architectures are targeted at special sensor nodes
and even if they all foresee the support for heterogeneous
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devices, the use of a common smart phone adds some chal-
lenges to the design of context aware architectures. One could
argue that smart phones are just another heterogeneous sensor
device. However, the smart phone on the one hand has less
limited resources than most special purpose sensor devices, on
the other hand smart phones have limited API support and
thus their utilization in a context reasoning process is limited.

Smart phones have limited API support or even restrictions
on who can access the API for good reasons, the smart phones
primary function is to act as the user’s private device, mainly
targeted at fulfilling the user’s communication needs. The
utilization in context reasoning processes thus can only be
an additional task that should not interfere with the main
task and has to protect the user’s privacy. For example, most
users will not tolerate having their smart phone’s clock set
by an external application, at least not without the user’s
confirmation.

The availability of the smart phone’s resources may be more
restricted than that of the resources of the special purpose
sensor devices. Thus, all characteristics and requirements have
to be addressed in a way that ensures minimal interference
with the smart phone user’s interest in the primary tasks of
his smart phone and the integrity and privacy of his data,
which is stored on the phone.

In the following, the functional requirements and software
qualities that should be fulfilled by a context aware architec-
ture are discussed, keeping in mind the special challenges of
smart phone utilization and the time synchronization needs
identified in the previous chapters.

5.1 Functional requirements

First, the functional requirements of a context aware archi-
tecture are discussed. To fully understand the functional
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requirements, the process of context reasoning has to be
decomposed to single processing steps.

The processing steps are (see Figure 3.10):

1. Retrieval of the raw sensor data – The first step of every
context reasoning process is to retrieve the sensor data.
This can either happen using a polling approach or a
notification based approach (publish/subscribe). The
data retrieved from the sensor is raw, that is it is not yet
processed in any way and thus often of little meaning to
any human user.

2. Pre-processing of the raw data – Raw data almost always
needs pre-processing before it can be used in the next
steps of the reasoning process. For example filtering
data or calculation of features using time series of data
is regarded as pre-processing in this thesis.

3. Calculation of low level context data – In order to make
sense for human users the pre-processed data has to
be further processed. In this step data from sensors is
translated to a more meaningful unit, e.g. from voltage
to ◦C for a temperature sensor. In this step data from
several sensors can be aggregated.

4. Abstraction to high-level context data – Low level
context data can be aggregated and further processed
in order to retrieve high level context data, also the
calculation of high level context can take user prefer-
ences into account. For example the aggregation of
multiple environmental sensors, like temperature, light,
and humidity sensors, can be used to derive a high
level context describing the room climate; however, what
is a comfortable room climate depends on the user’s
preferences.
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The step 4 is not necessarily occurring only once, but can
be repeated several times, while the calculated output becomes
evermore high level. All steps consume processing resources
and thus time and energy can be saved if the processing steps
are distributed in the network of available pervasive devices.
It is possible that all steps are performed on a single device,
like a smart phone, but pervasive environments will offer a
multitude of available devices. These devices will differ in
terms of processing power, energy supply and other resource’s
availability; hence a design goal of a context aware architecture
has to be to enable the distribution of the processing load in a
way that ensures the timely processing while saving resources,
especially of the user’s devices and of battery powered devices.

5.1.1 Encapsulation of sensor interfaces

It is a common understanding that one main functional
requirement of context aware architectures is to encapsulate
the interfaces of the sensors. The sensors used in pervasive
environments are heterogeneous in terms of vendors and
capabilities, and thus will not have a uniform interface. In
order to ease the development task these differing interfaces
are to be encapsulated to enable easy reuse of the sensors.

All architectural approaches discussed in Chapter 2.2 strive
to encapsulate the sensor interfaces. However, there is no
detailed explanation in the literature how the encapsulation
is exactly done and how a uniform interface may look like or
which functionality it exposes.

Generally, in the theory of object oriented programming an
interface of an object describes the properties and the behavior
of the object [68]. Hence, the properties and behavior common
to all sensors has to be defined. Moreover, it may be necessary
to identify classes of sensors that can share a uniform interface,
because sensors may be different in a way that may not allow
to encapsulate them with one uniform interface.
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5.1.2 Distributed processing and load distribu-
tion

As already outlined in the beginning of this chapter, in future
pervasive environments there will not only be a multitude of
environmental sensors but all kinds of computing resources
available. The resources may belong to and be carried around
by the users or be installed in the environment or even be
moving around autonomously. Some of these devices may
require the user to pay for the use of the provided resources,
some may be intentionally harmful.

It is therefore a functional requirement of context architec-
tures to enable the discovery and utilization of the resources.
Above all, it is necessary that the resources are used as efficient
as possible, regarding monetary costs, energy costs, processing
time, data integrity, and security.

To achieve this, the first requirement is that processing
steps are performed by loosely coupled software objects that
can be moved from one resource to another. That implies
that not only the sensors have to have uniform interfaces, but
also the algorithms used in the processing. If the architecture
should be programming language independent, the algorithms
have to be described using a separately defined document
format, the interpretation of those documents then has to be
implemented in every programming language that should be
supported.

When the used algorithms are movable in some way, there
need to be a way to query the resources for their status, for
example processing load and remaining battery power. And
at last, there need to be one instance that orchestrates the
distributed data flow. That is, applications will have to specify
the context they are interested in and the orchestrating in-
stance will assemble the needed processing steps and distribute
them on the available resources. When resources disappear
the compensation has to be handled by finding alternative
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resources and changing the data flow accordingly.
Out of the architectures discussed in Chapter 2.2 only the

SOLAR approach foresees a distribution support that fulfills
these requirements [22].

5.1.3 Dynamic environment support

The dynamic characteristic of pervasive environments, in
which new resources may appear and disappear all the time,
imposes some additional difficulties that an architecture
should support to handle. As already implied in the
introduction to this chapter, the dynamic is due to the
movement of users, carrying around several devices and
entering physical spaces in which devices are deployed.
Additionally, devices may be able to move around themselves
and also devices may disappear because batteries are dying or
because of hardware failures of the devices.

Connectivity is another always varying factor in pervasive
environments. Depending on the current location different
communication channels may be available, at different costs.
The communication channels will offer different bandwidth,
depending on technical restrictions and current load.

To face the difficulties of these dynamic, pervasive en-
vironments, an architecture for context awareness has to
support the discovery of resources. That is, if a user enters
a new physical space, the user’s devices need a means of
learning about the available devices in that space and how
to utilize them. Additionally, during the stay of the user, the
information about available resources has to be continuously
updated as resource availability will change over time. All
architectures proposed in the literature and discussed in
Chapter 2.2 acknowledge this requirement.

Secondly, there need to be architectural support for the
seamless change of communication channels. The architecture
should be able to provide an abstraction of the available
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communication technologies and free the application developer
from the burden to deal with the changing availabilities and
costs. The architecture should choose the technology used
to fulfill the application’s needs transparently and handle
handover and such.

While there are approaches in the literature to fulfill this
last requirement, it cannot be found in detail in the literature
published about architectural approaches towards context
awareness (Chapter 2.2).

5.1.4 Time synchronization

The one requirement that is not recognized by any of the
architectures described in Chapter 2.2 is the support for
time synchronization. One of the main contributions of this
thesis is the analysis of the impact of time synchronization
on reasoning accuracy. In Chapter 3 there are argued several
reasons that can cause time synchronization related issues. In
Chapter 4 an in-depth analysis of the impact on reasoning
accuracy concludes that the accuracy may significantly suffer
from clock drift and other time synchronization related issues.
Therefore, as it is the purpose of a middleware architecture to
transparently handle system specific difficulties, architectures
for context awareness should also enable the handling of time
synchronization issues.

Handling the issues can happen in several ways, depending
on the involved resources and their capabilities and on the
application needs. First of all, the involved resources may
not offer any time information at all. In that case, at least
the applications, if they require time information or specify
a desired synchronization accuracy, should be informed about
the lack of those.

Secondly, almost all devices will be offering time informa-
tion, but many will not provide any means of adjusting the
clocks as it is required by synchronization algorithms. In that
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case the architecture has to establish a relative time ordering
without adjusting the resource’s clocks, e.g. by maintaining a
table of relative clock offsets.

And last, if it is possible to establish a relative time
ordering, the accuracy may be sufficient for some applications
and not sufficient for other applications. In that case, the
architecture has to either increase the accuracy if possible or to
inform the application of the insufficient accuracy. Therefore,
some way to specify the accuracy requirements of applications
has to be specified.

In Chapter 6 an architectural approach that will especially
address the time synchronization needs depicted here, along
with the aforementioned requirements, is proposed. Before
proposing that approach, the definition of the requirements
has to be completed by discussing the software qualities (or
non-functional requirements) of an architecture for context
awareness.

5.2 Software qualities

Software qualities, also called non-functional requirements,
are characteristics that a software should have that are
not describing the software’s primary functions but rather
attribute characteristics to how the primary functions should
be performed. Generally, every software should fulfill as many
of the software qualities as possible, for a detailed list of
the many software qualities see [33]. Out of the long list of
software qualities, the following three are especially important
and challenging when it comes to software architectures for
context awareness.

Security and privacy are also often listed under software
qualities and both are arguably of very high importance for
context awareness; however they are out of the scope of this
thesis.
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5.2.1 Maintainability

Maintainability is a quality of software that expresses how
easy or difficult it is to maintain the software. Maintenance
of software here refers to bug fixing, extending and changing
the software. It is hard to find an absolute measure of
maintainability, however it can be measured as the time
a particular developer needs to fulfill a maintenance task
compared to the time the same developer needs for the same
task when a different software is maintained.

While maintainability is a desirable feature of every soft-
ware, it is of special importance for software used in ubiquitous
environments, like context aware applications. Due to the
high number of involved resources, users and applications and
the high dynamic, the software architectures in ubiquitous
systems are complex, which increases the possibility of bugs.
Also the variety of user preferences and the fast evolving
technologies cause a frequent change of the requirements a
software architecture has to address and thus maintenance
tasks will be frequent.

There is no easy receipt how to design software so that it
is maintainable [69], though there are the following principles
that are regarded as best practice to most likely achieve good
maintainability:

• Modularization – The partition of software into modules
or components that are loosely coupled allows software
maintainers to work on the single components that are
smaller than the whole software, without the need to
completely understand the other components. [70]

• Use of software patterns – The use of well know solu-
tions for recurring problems that are derived from the
observation of practitioners (so called software patterns)
ensure that maintainers recognize the patterns and thus
can understand the code more easily. [71]
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• Use of standards – Software that uses standards, e.g.
standard data exchange formats or standard communi-
cation protocols, also ensures that maintainers are able
to more easily understand the code, because they may
know the standard or will find additional documentation
resources and alternative implementations of the stan-
dard.

• Following conventions – Code that is not following
conventions will be irritating and harder to read for
developers that are accustomed to the convention.

• Documentation – Clearly, the more the code is docu-
mented the more likely a maintainer will understand the
code and the intention of the original developer.

Unfortunately there still is a lack of standards for context
awareness, e.g. there are no standards for describing, storing
and exchanging context, and there are no standards to describe
sensor interfaces and capabilities. To cope with foreseen future
multitude and variety of sensors, the establishment of those
standards will be inevitable.

5.2.2 Scalability

Scalability of software is how well the software performs when
the number of involved resources, users, and requests increases.
Performance here is measured in response time and memory
consumption. As for maintainability the main determining
factor for scalability is the sheer number of devices foreseen
in ubiquitous environments, software that only performs with
a small number of devices is useful for testing and proof of
concepts, but simply useless in real deployments of context
aware applications.

To achieve high scalability the following measures can be
taken:
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• Efficient algorithms – Doubtless, if running an algorithm
once is consuming less CPU resources and energy, a
hundred times running this algorithm will also consume
fewer resources. Note that the savings may not be linear,
for example on the one hand caching of data may cause
that two times running an algorithm is faster than the
run time of one run times two, and on the other hand
scheduling algorithms and interrupt times may cause an
opposite effect.

• Redundant (centralized) infrastructure – Every resource
has an upper limit where it is no longer able to server
any more requests, thus if parts of an infrastructure are
central to the system, they limit the overall capacity
of a system, unless they are redundant and the load
can be distributed. The ability of transparent load
balancing needs to be planned at design time, otherwise
the introduction of those techniques may be costly. For
example, if a list of resources is foreseen to be held in
every device’s memory, at a certain amount the device’s
capabilities will be exceeded, therefore the distributed
storage along with a selective update mechanism has to
be planned.

• Asynchronous communication protocols – If system com-
ponents handle communication synchronously, the com-
ponents have to wait for answers and are blocked, i.e.
they cannot perform any other tasks while waiting for
the answer. This blocking of resources that could be
otherwise of use will reduce a systems performance and
hence the scalability. On the contrary, asynchronous
communication allows for the queuing of massages and
the dispatching of multiple workers to answer the mes-
sages that will ensure a more efficient use of the systems
resources.
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• Self-awareness and self-adjustment – Of the self-
*requirements known from autonomic systems [72], the
self-awareness and self-adjustment requirements are two
requirements that will aid the scalability. If a system
knows its internal status, especially load, there is a
chance that an ubiquitous system may adjust, e.g. by
acquiring additional resources or releasing resources
from the environment.

To ensure that the proposed measures have the desired
effect on scalability continuous testing during the implemen-
tation phase is inevitable.

5.2.3 Reliability

The last software quality that should be emphasized here is
reliability. Reliability of software is how often the software
performs correctly, correctly meaning an answer is given to a
request and that answer is the answer the developer intended.
More important, reliability from a user’s perspective is that a
software behaves as expected.

The fulfillment of user expectations is of special importance,
given to what extent context aware applications will involve in
the user’s everyday life. In fact the success of context aware
applications depends on the reliability of these applications; if
users are expected to trust a software that will make decisions
on their behalf, and likely they will not be able to understand
the internals of the software, they will only do so, if the
software behaves as they expect and will not fail them.

Reliability is hard to achieve for complex systems, but the
following measures can be taken to raise the likelihood that a
software system is reliable:

• Testing – Continuously testing every piece (or unit) of
the software during the development process is vital
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to ensure reliability. Unit testing frameworks, often
integrated in IDEs, help developers to automate these
tasks. However, the test cases have to be specified and
it is important that functions are tested, especially when
unusual input values are given.

• Two-person integrity – Whether it is during the imple-
mentation, as in peer-programming, or afterwards, it is
always beneficial if a second person carefully looks on
what the first person has implemented.

• Quality assurance – Additionally to the two aforemen-
tioned measures, a well-defined quality assurance process
that is to follow during design and implementation of a
software can increase reliability.

• Software reuse – New implementations may contain new
bugs and will need extensive testing, while the reuse of
software that has earned merits in real deployment and
has already undergone testing by real users, potentially
with several bug fixes applied, will proof more reliable
in many cases. Additionally, the size of the developer
community or company behind a software product may
(but must not) hint to the software’s maturity.

Of the four mentioned measures to increase the likelihood
of high reliability, only the last is possible to take during the
design phase of a context awareness architecture. The other
three are methodical measures that have to be taken by the
developers using the architecture.

In the following chapter an architecture addressing the
described requirements and focusing on a solution of the time
synchronization issues is proposed and evaluated.

115



5 Requirements of an architecture for context awareness

116



Chapter 6

Directed acyclic graph
based reasoning

In Chapter 2.2 an overview of approaches towards context
awareness architectures is given. None of these architectures
considers the need to handle time synchronization of sensor
devices. In the Chapter 3 We discuss the various reasons that
can cause a lack of time synchronization and in Chapter 4 it
is shown that insufficient time synchronization and the issues
caused by this will affect the reasoning accuracy negatively.
Also, we discuss why the time synchronization approaches
known from WSNs and also that the Network Time Protocol
will not solve the problems in every case (see Chapter 2.1).

In the following we discuss a conceptual approach towards
an architecture that can handle the time synchronization in
cases where traditional approaches, as discussed in Chapter 2.1
will not work. Additionally, where appropriate, hints are
given, how the approach will fulfill the other requirements
discussed in the previous chapter, still this chapter focuses
on the time synchronization.

While the approach is only conceptual, it is partially
implemented and experiments are made to prove the claims
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regarding the time synchronization. This partial implementa-
tion is done in Java, however, the approach is and has to be
independent of programming languages. Therefore, we restrict
the discussion to communication paradigms and protocol level.

The analysis of the approach is based on the general
abstraction of the reasoning process as shown in Figure 3.10.
The sensor data flows through several processing steps; every
step consumes time and at some steps sensor data from several
other processing steps or sensor sources is aggregated. At this
aggregation points it is important that only sensor data is
combined in the calculation that is originating from the same
time frame (see Chapter 4).

This chapter is outlined as follows: First an alternative
approach taken from the research field of streaming databases
is discussed for the purpose of comparison. Then the approach
central to this thesis is detailed. At last, the two approaches
are compared theoretically and experimentally.

6.1 Stream barrier approach

In order to compare the approach of this thesis, a second
approach is considered. This second approach is taken from
the research area of streaming databases. To the best of our
knowledge, this approach has never been considered in the
research on context awareness, and none of the architectures
discussed in Chapter 2.2 considers time synchronization at all.
However, to those familiar with streaming databases, the use
of so called stream barriers is an obvious solution to some of
the time synchronization issues in context awareness that are
discussed in this thesis.

Generally, the data flow of sensor data from sensor devices,
through several processing steps to the application, is very
similar to the data flow in streaming databases. When
database content is streamed it will also be processed in several
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steps before it reaches a subscriber interested in the content.
The content here is the same as sensor data and the processing
steps, in streaming database mainly filtering and translation
steps, also can aggregate data from several streams.

In streaming media and streaming database applications
time stamps are attached to the data. At aggregation points
so called stream barriers are inserted. At these stream barriers
streams are delayed until other streams catch up [73]. This is
done using a simple algorithm that compares the time stamps.
Sensors can publish the data in streams to the subscribers as
usual. The stream barrier buffers all streams. Than it takes
the heads of the streams to check if their time stamps differ
only by the allowed ∆t. If not, the oldest sample will be
replaced with next sample from the corresponding buffer to
check again. This way only samples with fitting time stamps
are used for the reasoning.

This approach can be used if the sensors do not support
polling. The downside of this approach is that only a certain
percentage of samples have fitting time stamps (as described
in Chapter 4). Obviously, for this approach the sensor devices
still need synchronized clocks. The approach proposed in the
following can handle unsynchronized sensor devices.

6.2 DAG approach

To enable synchronized processing we propose a directed
acyclic graph (DAG) based approach [74]. Processing steps are
nodes in a DAG, sensors are sources and applications connect
to the sinks.

Definition 10. A DAG is a directed graph without cycles.
Nodes without ingoing edges are sources and nodes with no
outgoing edges are sinks. The depth of a node is the longest
path from a source to that node and the height is the longest
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Figure 6.1: Part of a DAG with sensor S and two processing
steps.

Figure 6.2: Reasoning-stages in a distributed acyclic graph
that represents devices in a distributed environment. Two
sensors are processed in two processing levels before the
application A1 gets the data. The first level has only one
calculation f1.

path from that node to a sink. The length of a DAG is the
length of the longest path.

If two nodes are connected by a directed edge, the result of
the calculation from the first node is an input parameter for
the calculation of the second node. For example, in Figure 6.1
the calculation result of f1 is the input for the calculation of
f2: f2(f1(x)).

To enable synchronized processing, nodes in the graph are
organized in processing levels. A processing level contains all
nodes that have the same height (see Figure 6.2). The level
of each node can be calculated, for example, by the simple
recursive algorithm.

Algorithm: Node level calculation
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calcSubgraph(Node n, int height){
for (iterator i =

nodes.getIterator();
i.hasNext()){

subgraph.add(n, height+1);
calcSubgraph(((Node)

i.next())
.getParentNodes(),
height+1);

}
}

calcSubgraph(A1,0);

The reasoning calculation is done in processing turns. In
the first turn the data of all involved sensors is captured.
Afterwards, starting form the highest level (i.e. the node with
the longest path to the application/sink) the input values for
nodes of the next level are processed. The next samples are
triggered by the nodes of the highest level not before all node
of this level have completed their calculations. This is a polling
approach in contrast to the normally used publish/subscribe.

For instance, if the data from one sensor is processed by
processing steps f1 and afterwards f2 and data from another
sensor necessitates only one processing step f3, f2 and f3 are
processed after f1 is already completed, since f1 belongs to
a lower level. The calculation in one processing turn can be
distributed among several processing units.

W.l.o.g., we assume that processing steps have the same
time complexity, since processing steps of higher time com-
plexity can easily be modeled by multiple (sub-) processing
steps. If two devices are available, distinct processing steps
can be computed in parallel. The system captures the data of
all sensors of which data is aggregated at the same time and
afterwards starts the calculation of processing turns. At any
processing level, only data captured at the same time instance
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Figure 6.3: DAG where data from one sensor needs two
processing steps and from the other only one processing step.

arrives, and the following processing steps are informed about
the new input data only when the calculation of all nodes at
one level is finished.

The turn based, synchronized processing ensures that a
calculation of a succeeding turn is delayed until all calculations
in the preceding turn are completed. All captured samples
have fitting time stamps from the other sensors and no samples
are unnecessarily taken. Figure 6.3 illustrates this property.
An undefined state is therefore impossible, since all calcula-
tions are based on sensor data that is captured at the same
time instant. The remaining sources for erroneous results for
values of identical contexts are then erroneous measurements
or errors in the processing units. The possibility that discrete
context values are calculated due to non-synchronized context
processing is eliminated by the DAGR approach.

Consequently the sampling rate is as slow as the slowest
node in the DAG. Samples are automatically taken at the
same time frame only differing by the network sending time.
This leads to only fitting time stamps as long as there are no
network timeouts. If there are timeouts, all sensor data has to
be requested a second time.

The downside of this algorithm, along with the dependency
on the slowest sensors, is that the sensors have to support

122



6 Directed acyclic graph based reasoning

polling of data and that a controlling instance is needed. This
instance can be part of a processing step, but surely needs
some extra implementation effort.

The benefit of the approach is that to retrieve time stamps
from heterogeneous devices, this devices only need to support
polling of data. There is neither a way needed to register for
sensor updates, nor is there a need for time stamps originating
at the sensor device. Hence, the clock synchronization of
the involved sensor devices is irrelevant, the DAGR approach
ensures relative ordering, and thus synchronized processing,
by protocol design.

We have partially implemented both approaches, DAGR
and the stream barrier approach, to evaluate the effect on
energy consumption. Chapter 6.3 presents the evaluation
results.

6.3 Evaluation

In Chapter 4 the issues caused by insufficient time synchroniza-
tion are analyzed; in this chapter we evaluate how the DAGR
approach solves the identified issues and compare the results
to the stream barrier approach. Additionally, the energy
consumption of both approaches is compared. In order to
evaluate the two approaches, the following scenario is handled
by both approaches.

To sense whether a person is standing or sitting, two
accelerometers are used. One accelerometer is placed in a
person’s pocket on the side of each leg. The accelerometers
are part of the SunSPOT sensor node [75]. These small
battery (3.7 V, 720 mAh) powered devices run a JavaVM
directly on Amtel AT91RM9200 (ARM9) hardware and have,
amongst others, a built-in accelerometer (ST Microsystems
LIS3L02AQ, 2g sensitivity) and light (Toshiba TPS851) sen-
sor. The devices are able to send data over IEEE 802.15.4
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Figure 6.4: Comparison of energy consumption per useful
samples over time.

radio connections to a base station.
The three axis of the accelerometers are used to calculate

the tilt Θ of the axis pointing to the earth when a person
is standing aearth (Θ = arcsin aearth

|ā| , total acceleration is
|ā|). To find out which axis is pointing to the earth the
gravitational acceleration helps. When the person is standing
still, the axis pointing to the earth is the only axis that
measures acceleration of approximately 1g. The light sensors
are used as control instance, only when it is ”dark” around the
SunSpot, it is assumed that the device really is in a pocket
(see Figure 6.5). There are some other cases when a person
angles both legs, those cases are not considered, however, to
extend the algorithms to detect that the person is jumping,
the total acceleration |ā| can be considered; to detect that a
person lays down a second sensor attached to the upper body
will be sufficient.

In our experiment, to sense whether a person is standing or
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if (( -0.5 < sample2.getTilt ())
& (sample2.getTilt () < 0.5)
& (-0.5 < sample.getTilt ())
& (sample.getTilt () < 0.5)
& sample2.getLight () < 1
& sample.getLight () < 1) {
System.out.println("Sitting");

} else {
System.out.println("Standing");

}

Figure 6.5: Simple algorithm to calculate if a person is
standing or sitting.

sitting, the two sensors’ sample rates differs by factor 1.5. Such
a difference may be possible for several reasons (see Chapter 3).
With the DAGR approach both sensors are constantly polled
for new samples and therefore all samples’ time stamps taken
are fitting (the directed acyclic graph has no more levels here).
With the stream barrier based approach ≈ 66% of samples
taken from the faster sensor did not have fitting time stamps
(∆t < 0.5R1, see Chapter 4). The energy consumption average
is 0.17mAh over an experiment duration of 12 hours for both
approaches. Figure 6.4 shows that the energy consumption
per useful sample consequently is significantly better for the
DAGR approach.

6.4 Optimized DAG creation

Given the idea of directed acyclic graph reasoning, one main
concern is how to derive the graph that describes the reasoning
process [76]. Furthermore, when several solutions for context
composition exist, how to determine the desired context with
the optimum solution for all objective functions?

Typical objectives are to minimize the computation time,
energy consumption or error probability as well as to maximize

125



6 Directed acyclic graph based reasoning

V6

V6

V4

0.9

4ms

V6

V4

0.9

4ms

V6

V
5

0.5

3ms

V6

V
5

0.5

3ms

V6

V4

V3

8ms

0.72

V6

V4

V2

6ms

0.81

Path 
complete

Path 
complete

V6

V4

V2

6ms

0.81

V6

V4

V2

6ms

0.81

Path 
complete

V6

V
5

V3

V6

V
5

0.5

3ms

Dominated
by other

solutions

Dominated
by other

solutions

List

Acc:

Time:

1

0ms

0.4

7ms

V1

V2

V3

V4

V5

V6

accuracy time

4ms

Desired context

2ms

0.9

0.8

0.9

0.5

0.9

4ms

2ms

3ms

V1

V2 V4

V3

V6

time:

acc:

time:

acc:

time:

acc:

time:

acc:

tim
e:

acc:

V
5

time:

acc:

Figure 6.6: Illustration of the operational principle of the
branch and bound algorithm [76].

the reliability of context providers. In practical applications,
several objectives can impact the decision for an optimum
alternative. When various objectives exist, it is looked for
Pareto optimal solutions that are superior or equal to all other
solutions in at least one objective.

6.4.1 Derive the directed graph

For a device to derive a graph that describes feasible context
reasoning sequences of context providers in the device’s prox-
imity, the available context providers (sensor devices) are to
be discovered.

For example FAME2, a distributed middleware for mobile
devices, which can be used in conjunction with DAGR, enables
such service discovery [77]. When services are discovered they
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provide a service description that details the service provided.
On obtaining a request, we assume that context providers
forward information about their service as well as information
about services in their proximity which can also be extended
to several hops. We also assume that this information is
forwarded by service descriptions each context provider offers.

From this information about accessible context providers,
services, properties and local proximity of further context
providers, the requesting node creates a graph G = (V,E)
in which the vertices represent distinct context providers (see
Fig. 6.6).

Every vertex has one or more ingoing ports and one
outgoing port that represent the input and output context
types accepted by the context provider. Edges are directed
between two vertices that are in direct proximity from outgoing
to ingoing port when the context provided at the outgoing
port matches the context required at the ingoing port. Edges
(vi, vj) are labelled with the costs (related to the distinct
objectives) of utilizing context provider i. Figure 6.6 depicts
an example graph.

The cost for creating this graph can be estimated by the
maximum number of edges in the graph. For n nodes (or
context providers) this is at most n−1

2 n = O(n2) when the
graph is fully connected.

The algorithm then takes a greedy approach to extend
the cheapest path iteratively by one node. When a path is
described completely, all paths that are more expensive in all
objectives are disregarded.

6.4.2 Derive the optimum reasoning sequence

The constructed graph may contain several sequences of
context providers that lead to a desired output sequence. Since
only (one of) the optimum solutions needs to be utilized,
distinct solutions have to be identified and weighted according
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to the edge weights.
Assuming that the maximum number of distinct input ports

for one context provider is k, the maximum number of ingoing
edges is l and the maximum length of a context reasoning
sequence is L, not more than Llk distinct solutions exist. This
is bounded from above by O(nn

n
) since the number of nodes

n restricts all these aspects. This worst case complexity time
is not acceptable.

In order to optimize the computation time the use of a
branch-and-bound algorithm is advised (Figure 6.6).

Algorithm: Branch and Bound

Input:
Ordered, labeled Graph (V,E),
Start-Vertex: n v
Objective functions: n f ,..., f 1

Initialise:
Add vertex n v into a list that is ordered

by the objective functions

Boolean operate = TRUE;
While (operate){

Take first path from list
if (path complete){

Scan through list until first Pareto
dominated solution is found and
remove this and all succeeding
solutions

exit
} else {

Choose and mark the cheapest unmarked edge
if (further unmarked edges exist){

Copy solution
Extend it by the edge
Insert new path (solution) into list
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(with respect to ordering)
} else

Insert new path (solution) into list
(with respect to the ordering)

}
}

The algorithm first starts at the final node – the desired
context to be provided by the context providers. All patterns
that result in a context other than the desired one can be
ignored.

The algorithm then takes a greedy approach to extend
the cheapest path iteratively by one node. When a path
is described completely, all paths that are more expensive
in all objectives are disregarded. Although the worst case
computation time is not improved by this approach, it will
in typical scenarios exclude a considerable amount of possible
paths that cannot be extended to Pareto optimal solutions so
that the actual runtime can be improved.

6.5 Conclusion

We analyzed the issue of differing sampling rates in a context
aware application where accelerometers are used to sense
whether a person is standing or sitting. This difference in
timing leads to samples not fitting a corresponding sample
from related sensors for a maximum allowed time difference.
The theory shows that in the case of a maximum allowed
difference of 1

10 of the sampling rate (accuracy needed to
detect human movement), only ≈ 20% of the samples have
fitting time stamps in the worst case (≈ 50% in the best case).
This is problematic, because detection of context changes may
depend on occurrences of certain patterns around the same
time at multiple involved sensors (e.g. movement detection
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with accelerometers). If the sampled data is not synchronized
it may lead to inconsistencies.

Two possible ways to handle the timing issues have been
discussed. One approach is based on polling and the organi-
zation of the reasoning process in an acyclic directed graph.
This allows the application to adapt to the sensor’s capabilities
and orchestrate the sensing to lead to a synchronized system.
The second approach is based on publish/subscribe and uses
buffering at barriers to let the streams of sensor data catch up.
The second approach cannot avoid the occurrence of samples
that are not fitting any other sample’s sample time but finds
the fitting time stamps in the streams.

The evaluation of the measured data confirms the theory of
Chapter 4. Also, the DAGR approach shows to demand 2/3
less energy per useful sample.

To show the practical relevance of the findings, we im-
plemented a scenario of sensing if a person is standing or
sitting. Two accelerometers are able to sense this. One
is able to operate at higher sampling rate than the other.
Both approaches are feasible in this scenario. The polling
approach (directed acyclic graph based reasoning - DAGR) is
significantly less energy demanding when retrieving a pair of
samples with fitting time stamps. The evaluation by measured
data proves the theoretical findings.
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Chapter 7

Time locality as a new
parameter for Quality of
Context

Given the dependency of reasoning accuracy on proper time
synchronization (viz. Chapter 4), it is obvious that applica-
tions and application developers should get information about
the time synchronization properties of a reasoning process.
There are already a set of parameters defined that strive to
rate the quality of a context date. The parameters are known
as Quality of Context parameters (QoC). Chapter 2.3 gives a
detailed summary of the work published in the field of QoC.

In short, Gray and Salber name six parameters to rate
the quality of a context information obtained from a sensor,
that are the coverage of the sensor, the resolution to
denote the smallest perceivable element, the construction-
related accuracy of the sensor, the repeatability to state
how stable the measurements are, the frequency of the sensor
updates and the timeliness, which is how old a measurement
is [44].

Buchholz et al. later refined this definition and identified
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five QoC parameters, that are the precision, the resolution,
the probability of correctness, the trustworthiness and
the up-to-dateness, which is how old a measurement is [45].

Additionally, Sheikh et al. distinguish between temporal
and spatial resolution [47]. Temporal resolution is the same as
frequency and spatial resolution is the same as in the definition
of Bucholz et al. [45]. In [50, 44, 48, 49, 46] similar definitions
are given.

None of those definitions considers the degree of time
synchronization as a parameter of QoC. The only time related
parameters are expressing how old a context date is, how
fast a sensor delivers new data, and the delay between
the real occurrence and the recognition by computers [78].
Furthermore QoC parameters, so far, are only defined for one
sensor. In ubiquitous computing, where data often is derived
by fusion of data from several sensor nodes, it should also be
possible to rate the aggregated data’s QoC.

To enable the consideration of time synchronization, we
propose a new parameter for QoC: time locality. The less
the time difference between two samples from different sensors
is, the better is the time locality. Better time locality means
it is less likely that the physical fact changed between the
two measurements. To achieve good time locality, time series
have to be in sync. In the previous chapters we analyze the
problems caused by insufficient time locality, show the effect
on reasoning accuracy experimentally, and test two possible
solutions to achieve high time locality. Time locality is the
first identified parameter related to fused data.

Definition 11. Two sensor value’s timestamps from sensor S1

and S2 are exactly matching when their time stamps ts1 and ts2
only differ by exactly ∆t or less. The time locality parameter
τ expresses a degree of matching for timestamps. τ is 1 if
two sensor value’s timestamps match exactly and decreases
with bigger time differences (Figure 7.1). The decreasing slope
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Figure 7.1: Time locality τ is 1 as long as the time difference
in less or equal ∆t. Afterwards it decreases until it strives to
zero.

can be defined by the application depending on the maximum
tolerated time difference.

There are two characteristics of sensors where time locality
is of particular importance when the data of more than one
sensor is aggregated:

Often a physical fact is measured by several redundant
sensors to improve the accuracy. If those sensors’ frequency
differs, some may take more time to recognize a change of the
physical fact. E.g. if one infrared sensor and one sonar sensor
are used to detect approaching persons, the sonar sensor will
detect the person before the infrared sensor can (the sonar has
greater range). Though, the measurement time stamps have
to be compared to clearly decide if a person is approaching
or departing. If time locality is not considered for redundant
sensors the reasoning may lead to ambiguous results.

Also, whenever it is important to consider the ordering of
events, e.g. distinguish between alternating movement and
simultaneous movement, it is important to consider the time
locality. With lower value of time locality τ , the probability
of incorrect ordering increases. For example, when the two
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accelerometers in the experiment in Chapter 6.3 are used to
recognize if a person is sitting by considering the angles, sitting
can be confused with walking if it is not clear if both legs are
angled alternating or simultaneously; however, if τ = 1 it can
be clearly distinguished (see also Figure 4.1).
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Chapter 8

Conclusion and Outlook

In the previous chapters we have discussed the issues related
to time synchronization in context aware applications, which
are an important part of the vision of ubiquitous computing.
The main contributions of this thesis are:

• an analysis of known time synchronization approaches
and their applicability in context aware applications,

• an analysis and evaluation of the reasons that cause time
differences between devices, an evaluation of common
reasoning algorithms for their susceptibility to time
synchronization related decreases of reasoning accuracy,

• a conceptual approach to cope with the time synchro-
nization issues along with a new architecture for context
awareness,

• and a proposal to incorporate time synchronisation
information into Quality of Context.

In the following chapters we summarize the contributions
of this thesis. Chapter 8.1 details the contributions and results
of the research conducted for and described in this thesis.
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Throughout the chapters Chapter 8.1.1 to Chapter 8.1.4 every
major contribution is summarized. In Chapter 8.2 open issues
and suggestions how to build on the results of this thesis are
discussed.

8.1 Conclusion

Even if we still do not see large scale real world deployments
of context aware applications, such applications and architec-
tures to support them are researched for more the 10 years
now. However, none of the published approaches considers the
role of proper time synchronization between devices gathering
context data.

This lack of consideration may be due to one of the reasons,
unawareness of the issues, a believe that the issues can be easily
solved, or a viewpoint that these issues are inherent to context
aware applications and must not be solved. The intention
of this thesis is to raise the awareness of this issues and to
show that they can be solved, even if known synchronization
approaches are not applicable at all.

In the previous chapters we have presented the result of
our research. These results show that time synchronization
is a serious issue for context aware applications and that this
cannot be solved with known synchronization algorithms but
through a change of communication models in context aware
architectures. These results are summarized in the following.

8.1.1 Applicability of known synchronization ap-
proaches

In Chapter 2 known time synchronization protocols are de-
scribed. All protocols, whether it is NTP or synchronization
protocols specially developed for sensor networks, are based
on techniques to estimate the non-deterministic parts of the

136



8 Conclusion and Outlook

time it takes to send a time stamp from one device to another
for comparison. Thus, the device clocks can be adjusted to
a reference source using the time received from that source
corrected with the estimate send time.

Beside some minor obstacles, in ubiquitous environments
there often is no means of clock adjustment available. For ex-
ample, smart phones, which are commonly regarded as the first
true ubiquitous devices and therefore are object of extensive
research as devices to enable context aware applications, often
offer no API that allows for clock adjustment. Also, even more
important, smart phones are personal user devices, as many
devices in ubiquitous environments will be. Users may not
want their devices’ clocks to be adjusted whenever they enter
a physical space that makes use of their devices, by whatever
external entity.

8.1.2 Reasons for timing issues

In Chapter 3 the reasons for timing issues are discussed.
There are four major reasons for timing issues in context
aware applications. The first reason is that the clocks are
often not synchronized with the desired accuracy. Sensors are
often associated with low cost components that may cause
device quality related and other problems, e.g. unstable
oscillators. As argued in Chapter 2 known synchronization
approaches may not be applicable. The experiments described
in Chapter 3 show that clock drift of clocks in modern smart
phones is in the order of seconds per hour. Also the offset
observed in tested phones is 2 seconds in the best case.

The second reason for timing issues is that sensors have dif-
ferent construction-related physical capabilities. In dynamic
environments where several sources of sensor data may be
dynamically discovered and aggregated, it is not safe to assume
that all sensors have the same physical capabilities, even if
they are of the same general type. Furthermore, sensors of
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different types clearly have different physical capabilities and
different measurement characteristics like different sampling
rates. Thus, some sensors may take more time than others to
sense a change in the physical environment.

Third, the sensor nodes have additional tasks to fulfill. For
example, smart phones are often equipped with accelerometer
sensors and light sensors, however, they clearly have additional
processor load. Normally there is no way to influence the
scheduling algorithms on the devices to ensure measurements
at a fixed frequency. Therefore, the maximum sampling
frequency is restricted by the additional processing load.
Furthermore, it may not be possible to ensure sampling at
fixed and stable sampling frequency.

At last, the common understanding of context reasoning
foresees the pre-processing of sensor data in several steps and
the inference of high level contexts out of the raw data [15,
22, 23, 24, 25]. These processing steps all consume processor
capacity and in distributed scenarios are foreseen to be carried
out on different devices with respect to the device capabilities,
which consumes time while sending data over the network.
Therefore, the time it takes before sensor data reaches the
application is not only determined by the sensor itself, but
also by the time it takes to process the data. This time is
the sum of the time consumed by the processing steps and the
network delays and can vary from value to value and sensor to
sensor. This also restricts the maximum sampling frequency
and hinders a stable sampling frequency.

8.1.3 Impact of time synchronization on reason-
ing accuracy

In Chapter 4 the impact of time synchronization on context
reasoning accuracy is analyzed. The evaluation shows that
for both, manually defined reasoning rules and classification
learning techniques, time synchronization has a significant
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impact on the reasoning accuracy.
Six commonly used classification learning algorithms,

namely Bayesian network (BN), K-nearest neighbor (IBk),
decision tree (J48), rule-based classifier (JRip), naïve Bayes
(NB), and sequential minimal optimization (SMO), are tested
for their dependency on time synchronization. This is done
in a scenario where two acceleration sensing devices placed at
a user’s wrists are used to recognize different user activities,
such as typing on keyboard, writing, using mouse, and using
phone.

For all algorithms the evaluation with different time offsets
between the two sensing devices, introduced after the training
phase, showed significant decreases of reasoning accuracy. The
evaluated time offsets are chosen based on the findings from
the previous evaluation of typical offsets of smart phone clocks.

Additionally, the impact of different sampling frequencies in
situations where applications demand that only context data
from the same specified time frame is aggregated is studied.
It shows that even small differences in sampling frequencies,
like those that are found to possibly occur due to the reasons
described in Chapter 3, lead to significant number of sample
pairs that do not fit in the required time frame and are thus
unusable in the worst case.

8.1.4 Synchronization approach and new Quality
of Context parameter

In Chapter 6 a novel approach to enable synchronized pro-
cessing of context along with a new architecture based on
this concept is proposed. This new architecture enables the
synchronized processing of context data, without the need for
time stamps originating from the sensing devices.

While architectures for context aware applications com-
monly use publish/subscribe based communication models
(see Chapter 2.2), the approach proposed in this thesis shifts
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the communication model to a polling based model. This,
along with an organization of context processing steps in a
directed acyclic graph, allows to control the overall sampling
frequency and is independent of devices’ time stamps.

The proposed approach is evaluated and compared with
a second approach that depends on device originating time
stamps, but can be used in cases where a polling based
communication model is not feasible. Both approaches ensure
that only data with time stamps from defined time intervals
are aggregated. The second approach, however, cannot control
the sampling frequencies and thus suffers from the problem
described in Chapter 3 that a significant numbers of samples
may be useless. For example, we showed theoretically and
experimentally that in the case of a maximum allowed time
difference of 1

10 of the sampling rate, only≈ 20% of the samples
have fitting timestamps in the worst case.

The polling based approach, because it allows to control
the sampling frequencies, can reduce the energy consumption
of context gathering. In an experiment we show that the
approach demands 2/3 less energy per sample pair fitting in
the specified time interval, compared to the second approach.

8.2 Outlook

Although this thesis shows the importance of time synchro-
nization for context reasoning applications and proposes a
solution to solve these issues, there still remain interesting
research questions that are out of scope for this thesis, but
which we would like to see tackled in the future. To complete
this thesis, here we will summarize the most important of these
questions.

First, there is a special characteristic of sensor networks
that could be used in case devices allow to adjust the clocks.
Normally, time synchronization is based on the estimation of
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the time it takes to transfer a reference time to the device to
be adjusted. This estimation is basically done using averaged
time from one or several rounds of sending time stamps back
and forth. In sensor networks, there are external reference
points that can be used for offset calculation: the sensor
events. For example, if all involved devices have a light sensor
and are in the same room, when the light is switched on,
it will be possible to compare the time stamps the devices
attach to this event and calculate the offset between the device
clocks. Because there is no estimation of network sending
times from round trip times involved that should allow for
high synchronization accuracy.

Another interesting research topic is, in situations where
the time synchronization is not possible, how the reasoning
algorithms can be extended to be less prone to timing issues.
Furthermore, the experiments shown that some algorithms
are less prone than other algorithms but offer worse overall
performance (see Chapter 4), it will be interesting to further
investigate if this algorithms can be improved to offer better
performance.

At last, we propose the use of time synchronization infor-
mation as part of Quality of Context (see Chapter 7). As
for all Quality of Context parameters, it is still unclear how
applications should react to the information that time syn-
chronization is not sufficient. Possibilities include switching to
another sensor source, estimate the value from context history,
switch the used algorithm, trigger a synchronization process if
possible, and simply cancel the context calculation.
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nsIn context-awareness, sensors in the vicinity of the user are utilized 

to infer a user‘s situation. There is no single sensor that is able to 

correctly and completely access a user‘s situation, context aware-

ness is always dependent on a multitude of sensor information to be 

aggregated to at least estimate a user‘s situation. It cannot be safely 

assumed that the clocks of all these sensor devices are accurately 

synchronized. 

In this book

•	 we discuss the issues related to time synchronization in context 

aware applications,

•	 analyze known time synchronization approaches and their ap-

plicability in context aware applications,

•	 analyze and evaluate the reasons that cause time differences 

between devices,

•	 evaluate common reasoning algorithms for their susceptibility 

to time synchronization related decreases of reasoning accu-

racy,

•	 propose a conceptual approach to cope with the time synchro-

nization issues along with a new architecture for context awa-

reness,

•	 and propose to incorporate time synchronization information 

into Quality of Context.
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