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Zusammenfassung

Da die Zahl der drahtlosen Protokolle, Dienste und Geräte in den letzten Jahrzehn-
ten stetig zugenommen hat, steigen die Anforderungen und Herausforderun-
gen an die verfügbaren Spektrumsressourcen weiter an. Tag für Tag ist der
Zuweisungsprozess von festen Teilen des Spektrums zu bestimmten Diensten weniger
geeignet für die zukünftigen technischen Herausforderungen. Dies führt zu Ineffizien-
zen in der Frequenznutzung, da die nicht lizenzierten Frequenzbänder im Gegensatz
zu den zeitweise ungenutzten lizenzierten Bändern überfüllt und überlastet sind.
Als Lösung dieser aktuellen Probleme und Herausforderungen kann eine intelligen-
ten Funkplattform eingesetzt werden. Diese Plattform muss in der Lage sein, die
verfügbaren Ressourcen effizient zu verwalten, indem sie ihre Parameter an die Umge-
bung anpasst. Dies kann erreicht werden, indem die spektrale Umgebung basierend
auf ihrem vorherigen Verhalten präzise erkundet wird.

Um die oben genannte Aspekte in einem Funksysteme zu adressieren, wurde 1999
das Konzept eines kognitiven Radios (CR) eingeführt mit dem Ziel, das verfügbare
Spektrum zwischen lizenzierten primären Benutzern (PUs) und nicht lizenzierten
sekundären Benutzern (SUs) effizient aufzuteilen. In diesem Szenario sind die SUs
in der Lage, dynamisch auf das Spektrum unabhängig von der primären festen
Zuweisungsrichtlinie zuzugreifen. Mit anderen Worten, die SUs sind in der Lage,
die lizenzierten Frequenzbänder für ihre eigene Übertragung zu erkunden, sofern die
Übertragung der PUs dadurch nicht beeinträchtigt wird. Aus diesem Grund benötigt
ein CR-Netzwerk (CRN) ein zuverlässiges Spektrumbelegungsvorhersageschema in
Kombination mit Spektrumserfassungs- und Spektrumzugriffsmechanismen. Dies
ermöglicht den SUs, die Nutzung der spektralen Ressourcen durch die PUs zu er-
lernen, ihre zukünftige Aktivität vorherzusagen und, falls nötig, ihre Sendeaktivität
auf ein anderes freies Band zu verlagern.
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Zusammenfassung

Diese Arbeit stellt verschiedene Spektralbelegungsvorhersagen auf Basis von Hidden-
Markov-Modellen (HMMs) für Filterbankmehrträger-Übertragungsverfahren
(FBMC) vor. Durch den Einsatz einer diskreten Fourier-Transformation-
modulierten Filterbank (DFT-FB) kann der SU-Empfänger die Zeit-Frequenz-
Eigenschaften des empfangenen Signals, das in einem geeigneten Vorhersage-Schema
verwendet werden soll, effizient untersuchen.

Zunächst stellt diese Arbeit einen neuartigen Vorhersageansatz in Form eines kon-
tinuierlichen HMM (CHMM)-basierten Schemas für ein System unabhängiger Teil-
bänder als Alternative zu dem weit verbreiteten diskreten HMM-(DHMM) basierten
Schema vor. Damit entfallen die Nachbearbeitungsmechanismen, die bei den derzeit
verfügbaren Prognoseverfahren zum Einsatz kommen. Zweitens wird der vorgeschla-
gene CHMM-basierte Prädiktor durch die Einführung eines gekoppelten CHMM-
basierten TF-Spektrum-Prädiktionsschemas für ein System von abhängigen Teil-
bändern erweitert, so dass alle Abhängigkeiten zwischen benachbarten Teilbändern
in einem geeigneten Belegungsmodell erfasst und in die Prädiktionsentscheidung
einbezogen werden können.

Der Vorhersageprozess für die eingeführten Spektrumbelegungsvorhersageschemata
besteht aus drei aufeinanderfolgenden Phasen: 1) Eine anfängliche Pilotphase als
Teil der Spektrumserfassung, die erforderlich ist, um ein bedingtes Modell des
empfangenen Signals basierend auf der Verfügbarkeit des PU-Signals aufzubau-
en - 2) Eine Lernphase zum Erlernen des PU-Verkehrsmusters, um die Parameter
des betrachteten Vorhersagesystems entsprechend anzupassen - 3) Eine Anwesen-
heitsvorhersagephase.

Die Leistungsfähigkeit der vorgestellten TF-Vorhersagesysteme wird in einer inter-
ferenzbasierten Umgebung untersucht. Im Gegensatz zu den meisten Arbeiten in
diesem Bereich, welche größtenteils Gaußsches Rauschen betrachten, modellieren wir
Interferenzen in dieser Arbeit als nicht-Gaußsches Rauschen. Diese Interferenzterme
ergeben sich aus der Überlagerung von Signalen von mehreren Benutzern, die gleich-
zeitig über das gleiche Teilband senden. Das Rauschen wird mit Hilfe einer räumliche
Matérn-Hard-Core-Verteilung modelliert, die die Interferenz in einem Carrier-Sense-
Multiple-Access-/Kollisionsvermeidungs-Netzwerk (CSMA/CA) in einem beschränk-
ten Bereich widerspiegelt.
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Abstract

As the number of wireless protocols, services, and devices have increased in the
last decades, demands and challenges facing the available spectrum resources are
continuing to grow. Day by day, the process of assigning fixed spectrum portions
to certain services and protocols becomes more challenging. It creates inefficiency
in spectrum usage as the unlicensed spectrum bands are crowded and over-utilized,
unlike the mostly idle licensed bands. Therefore, an intelligent radio platform must
be employed to solve these current issues and challenges. This solution must be able
to manage the available resources efficiently by adapting its parameters according
to the surrounding environment. This can be achieved by properly learning the
spectral environment based on its previous behavior and behave accordingly.

To address the problem outlined above, the concept of cognitive radios (CRs) was
introduced in 1999 to efficiently allocate the available spectral resources between
licensed primary users (PUs) and unlicensed secondary users (SUs). In this setting,
the SUs are able to dynamically access the spectrum irrespective of the available
fixed assignment policy. In other words, the SUs are able to explore the licensed
spectrum bands for their own transmission, provided they do not disturb the trans-
mission of any PUs. For this reason, a CR network (CRN) requires a reliable
spectrum occupancy prediction scheme in combination with spectrum sensing and
spectrum access mechanisms. This allows the SUs to learn the PUs’ traffic pattern,
predict its future activity, and switch its transmission to another free subband when
required.

This work presents different hidden Markov model (HMM) based spectrum occu-
pancy prediction schemes for filter bank based multi-carrier (FBMC) transmission
applications. By employing a discrete Fourier transform-modulated filter bank
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Abstract

(DFT-FB), the SU receiver can efficiently explore the time-frequency (TF) char-
acteristics of the received signal to be utilized in a suitable prediction scheme.

First, this work presents a novel prediction approach in the form of a continuous
HMM (CHMM) based scheme for a system of independent subbands as an alter-
native approach to the widely implemented discrete HMM (DHMM) based scheme.
Hence, the post-processing mechanisms which are employed by the currently avail-
able prediction schemes are eliminated. Second, due to its superior performance
with respect to the DHMM based scheme, the proposed CHMM based predictor is
expanded by introducing a coupled CHMM based TF spectrum occupancy predic-
tion scheme for a system of dependent subbands, such that any interdependencies
between neighboring subbands are captured in a proper occupancy model as well as
included in the prediction decision.

The prediction process for the introduced spectrum occupancy prediction schemes
consists of the three successive phases. 1) An initial pilot phase as part of spectrum
sensing required to construct a conditional model of the received signal based on
the availability of the PU signal. 2) A learning phase to learn the PU’s traffic
pattern in order to accordingly adapt the parameters of the prediction scheme under
consideration. 3) An occupancy prediction phase.

The performance of the presented TF prediction schemes is investigated in an
interference-based environment. Unlike most approaches in this field which mostly
consider Gaussian interference, in this work we consider a non-Gaussian interference.
This intereference arises from superposition of signals from multiple users simulta-
neously transmitting over the same subband. It has been modeled as a Matérn
hard-core spatial distribution, which reflects the interference in a carrier sense mul-
tiple access/collision avoidance (CSMA/CA) network in a finite area.
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1
Chapter 1.

Introduction

1.1. Motivation

New wireless technologies and services have emerged recently and become
an important part of our daily lives. For example, the emerging of the
Internet of Things (IoT) has provided a revolution of wireless connectivity beyond
the traditional fashion, as data can be transmitted over the air between objects and
without human interaction. Furthermore, due to the exponential growth of wireless
traffic transmitted over the available spectrum bands in the last decades, the unli-
censed spectrum bands – also known as the industrial, scientific and medical (ISM)
bands – are found to be highly over-utilized. On the other hand, only 38% of the
licensed spectrum bands are actually occupied [3, 4], hence a non-uniform and in-
efficient use of spectrum utilization is introduced. Due to the introduction of new
wireless services and technologies as well as an increasing number of devices, wireless
networks – especially those operating in the ISM bands – suffer from performance
degradation. This can be in the form of Quality of Service (QoS) reduction due
to packet loss, the presence of co-channel interference (CCI), and the inability of
transmission due to unavailable free spectrum band [5].

Furthermore, based on the traffic forecast update presented in [6] for the time inter-
val 2015-2020, it has been declared that “mobile data traffic has grown 4,000-fold
over the past 10 years and almost 400-million-fold over the past 15 years” alone,
and “there will be 11.6 billion mobile-connected devices by 2020”. Thus, the con-
cept of meeting the current demands in the form of lower latencies, as well as higher
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1. Introduction

data rate and traffic capacity [7], has been adopted as the 5G telecommunication
standards, where cognitive radio (CR) is one of its basic and key enablers [8].

1.2. Concepts of Cognitive Radio

First introduced by Joseph Mitola in 1999 [9], CR technology has come up with a
new intelligent radio architecture or platform which integrates different fundamen-
tals such as signal processing, mathematical and computing theories, and machine
learning methods [10]. This intelligent wireless platform is capable of utilizing the
available spectrum resources efficiently, as it must be aware of its surroundings and
able to adapt to any changes in the environment according to the current require-
ments [11]. This adaptation is in the form of updating the system’s parameters,
such as transmit-power, carrier-frequency, and modulation strategy [11]. Moreover,
the author in [11] has stated that such adjustments must be performed in real-time,
taking into account that reliable communications are available on demand within
efficiently utilized radio resources.

Licensed spectrum bands are indeed exploited by unlicensed secondary users (SUs)
within CR networks (CRNs) under the condition that they must not collide or inter-
fere with the available licensed primary users (PUs), where the latter would main-
tain a certain predefined QoS [12]. Therefore, CRN must be intelligent enough to
perform the following cognitive functionalities: during spectrum sensing the SU re-
ceiver detects the availability of any PU by sensing the environment and defining
those channels which are free from any PU within the sensed time duration. Real-
time spectrum sensing results are afterwards utilized to perform a spectrum access
decision. However, as the information obtained from spectrum sensing would no
longer be up-to-date due to several delays introduced from the hardware itself [13],
a collision between SU and PU would still occur. Therefore, spectrum sensing is
combined with a reliable spectrum occupancy prediction scheme to learn the PU’s
traffic pattern and predict its availability at future time slots in order to minimize
the collision probability. Then, the SU would choose the most appropriate spectrum
band to utilize for its own transmission upon its requirements, ensuring a smooth
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1.2. Concepts of Cognitive Radio

shifting between free subbands as well as resource sharing among multiple coexisting
SUs [14].

The CR approach can be carried out within three cognitive paradigms [15]. A SU
attempts to transmit its signal over a certain licensed band only if PUs are absent.
In other words, the SU must not coexist with a PU in the same channel. This
approach is similar to an on-off transmission from the SU’s point of view, and it is
known as an interweave paradigm. Due to this on-off performance, synchronization
between the SU transceiver has to be repeatedly performed each time it is allowed
to access a channel.

A more efficient yet complicated scheme is to access the licensed bands continuously
in an underlay paradigm, regardless of the presence of any PU. In this approach,
both SU and PU transmit simultaneously over a common channel, however the
interference level measured at the PU receiver due to the SU’s transmission should
be less than a predefined value. Hence, the PU still maintains its predefined QoS.
For this matter, different adaptive power schemes come in handy [16] to optimize
the transmission power level of the SU signal. As a result, the SU must be able to
spread its transmission below the noise/interference floor of the PU, similar to the
basic idea behind spread spectrum and ultra-wide band communication techniques.

Finally, an overlay paradigm is by far the most advanced and sophisticated approach,
assuming the SU to have a full knowledge of the PU transmission; including its
message and the codebook. Dirty paper coding techniques are utilized for this
purpose [17]. As a result, both SU and PU transmit simultaneously over a common
channel, where the SU assigns part of its power to deliver its own message, and
assists the PU by re-transmitting its messages [18]. Such a mechanism can be
performed both in licensed and unlicensed bands, as the user’s transmission would
be interference-free and improved. On the other hand, the SU carries on with its own
transmission and assures efficient spectrum utilization. Moreover, hybrid schemes
based on multiple paradigms can also be utilized to maximize the spectrum efficiency
as explained in [19].

3



1. Introduction

1.3. Spectrum Occupancy Prediction in Cognitive

Radio Networks

Irrespective of the considered paradigm, spectrum occupancy prediction plays an
important role in CRNs. Not only that it provides future information regarding
PU’s existence to avoid any possible collision, spectrum occupancy prediction can
also be utilized to optimize the CRN. Future spectrum occupancy information can
be fed back to spectrum sensing in order to sense only a subset of channels, and
skip those which are predicted to be free [13, 20], hence the energy consumption
is reduced. In addition, the channels which are predicted to be free can be shared
efficiently by multiple SUs based on their requirements and the predicted quality of
the channels [21, 22].

Similar to spectrum sensing, spectrum occupancy prediction depends on the sig-
nal received (sensed) by the SU receiver in order to model the PU occupancy at
each subband, understand its traffic pattern, and predict its future occupancy. In
order to obtain a high resolution of the received signal both in time and frequency do-
mains, the SU receiver employs an appropriate time-frequency representation (TFR)
method, where the received signal is mapped from the time-domain into the
time-frequency (TF) domain. For this purpose, filter bank (FB) transmission has
been considered in this work.

FB based multi-carrier (FBMC) transmission has captured the attention of many
in signal processing and wireless communication fields. Initially, it was employed in
speech compression and image processing applications [23]. Similar to the widely
known and conventional orthogonal frequency division multiplexing (OFDM)
scheme, FB provides an efficient method to transmit multiple messages simultane-
ously via parallel subbands over the available bandwidth. Mainly, FBMC consists
of two parts: analysis and synthesis filters. In the analysis FB (AFB), the signal is
decomposed or broken down into its TF components or sub-signals, whereas the
original signal can be reconstructed given its sub-signals in the synthesis FB (SFB)
[24]. Hence, FB transmission becomes the fundamental structure of transceivers
within multi-carrier systems, where the transmitter and receiver are configured
based on the SFB and AFB, respectively.
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Different from OFDM, a properly designed FB - as the filters prototype are designed
based on a certain optimized window function or pulse - is capable of eliminat-
ing both intra-band and cross-band inter-symbol interference (ISI) [25, 26] without
the need of a guard period. Among the different implementation methods and
approaches, discrete Fourier transform (DFT) FBs have been widely utilized to im-
plement both AFB and SFB in a FBMC system, due to its simplicity and low
implementation costs [26]. Thus, the DFT - modulated FB (DFT-FB) has been
utilized in this work. Further discussion is presented in Chapter 4.

1.4. Literature Review

The previously explained CRN functionalities have been widely addressed in the
literature. However, spectrum occupancy prediction has been the least addressed
functionality, in comparison to spectrum sensing for example. This section presents a
literature review concerning spectrum occupancy prediction schemes. Subsequently,
the contribution of this work is introduced at the end of this chapter.

Authors in [27, 28] have argued that spectrum access decisions based on real-
time measured spectrum sensing signals create collisions with PUs, due to
delays introduced by the hardware platform. To overcome this matter, a
hidden Markov model (HMM) based scheme has been employed to predict the
channel state to improve the system performance. Thus, SU would select the
best available channel to utilize for its transmission based on the prediction in-
formation obtained via HMM. However, the proposed predictor structure contains
the fast Fourier transform (FFT) to map the time-domain received signal into the
frequency-domain, followed by a quantization process for discretization purposes to
fit it into the designed HMM prediction scheme.

Carrier sense multiple access (CSMA) spectrum allocation methods have been dis-
cussed in [29] by introducing a HMM based dynamic spectrum access technique. The
proposed technique predicts the duration a channel is going to be idle, hence the SU
can utilize it for its own transmission. However, the proposed scheme makes sure
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that the SU would switch to another free channel before a legitimate PU, which is as-
sumed to follow a Poisson distribution, starts its transmission on that same channel.
In a similar method, [30] proposes a frequency-hopping algorithm combined with a
HMM based channel occupancy prediction scheme. The proposed scheme allows the
SU to switch its transmission between the unoccupied channels by PUs, according
to a specific hopping sequence generated by the SU itself and based on the gained
future occupancy information. Furthermore, in an underlay CRN, the interference
temperature dynamics of a PU has been modeled as a HMM scheme in [31]. The
proposed scheme provides the SU with the future interference temperature in order
to select the subbands for its underlay transmission.

Apart from HMM based approaches, a neural network (NN) has been utilized
in CRN as another example of machine learning schemes. A NN based
multilayer perceptron (MLP) predictor has been introduced in [32, 33], which saves
energy consumption during spectrum sensing as well as improves the spectrum uti-
lization. Similar to HMM schemes and any machine learning method, MLP requires
employing a set of past occupancy information of a certain channel in order to pre-
dict its future occupancy. Such NN based approaches come in handy for a CRN, as
they require no prior knowledge of the channel statistics, which is unavailable for
SUs in practice. Likewise, [34] employs back propagation NN as a spectrum predic-
tor for improving energy consumption and spectrum access performance. Moreover,
an online support vector regression (SVR) scheme has been proposed in [35] for a
power regression based online learning technique, in which the PU traffic follows a
Poisson distribution. The proposed prediction scheme keeps adapting its parameters
based on any changes in the considered traffic.

On the other hand, channel quality prediction has been investigated in
[21]. First, the authors present a spectrum sensing approach based on a
non-stationary HMM (NSHMM) where its parameters are estimated via Bayesian
inference approach and Gibbs sampling. Thus, the NSHMM reflects the expected
duration of a channel’s state as well as spectrum sensing accuracy, which is to be
utilized in a channel quality metric. Due to the non-stationarity behavior of the wire-
less environment, a NSHMM has been chosen such that the transition probabilities
are a function of time duration of the PU existence in a current state.
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Different spectrum modeling and occupancy prediction approaches can be found
in [36]. For example, time series analysis methods have been utilized in [37] to
model and predict the occupancy information of the Global System for Mobile com-
munications (GSM) band via autoregressive moving average (ARMA) approach. A
similar approach has also been followed in [38] by utilizing autoregressive (AR) mod-
els. Furthermore, AR based spectrum hole prediction has been implemented in [39],
based on a second-order scheme denoted as [AR-2] along with Kalman filter. A
spectrum hole in this content is another term to describe an unoccupied subband by
PU. The coefficients of the [AR-2] model are evaluated via Yule-Walker equations.
Moreover, being known as a classical statistical approach for time series modeling
and prediction, Kalman smoother has been employed in [40] to predict short and
long-term behavior of signals, assuming linear Gaussian assumptions and following
a cross-validation approach to determine the noise densities.

As spectrum occupancy prediction scheme is a challenging task which consumes
energy [13], authors in [22] discuss spectrum prediction schemes from an energy
consumption point of view. Thus, an energy efficient prediction strategy based on
numerical results is proposed, in which prediction strategies that maximize the en-
ergy efficiency based on a parametric optimization problem are implemented. With
respect to energy consumption, [20] proposes an exponential moving average (EMA)
based spectrum prediction approach to improve spectrum sensing performance. An
EMA based predictor provides the future energy level so that the SU can skip ex-
ecuting spectrum sensing on those channels whose future energy is higher than a
predefined threshold. Thus, reducing energy consumption is due to redundant spec-
trum sensing.

1.5. Thesis Contribution

Apart from speech and pattern recognition, computational molecular biology, and
stock market prediction [41], HMM schemes have been widely implemented in CRNs,
as stated in Section 1.4. It has been considered for spectrum sensing purposes [42],
spectrum occupancy modeling based on the PU traffic [43], and spectrum occupancy
prediction [44, 29, 45, 32]. So far, the considered schemes for CRN, as presented in
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Section 1.4, are basically based on discrete HMM (DHMM) schemes. They rely on
discretization processes to map the observed or received signal by SUs into discrete-
valued observations, or in other words, employ spectrum sensing output into a spec-
trum occupancy prediction scheme.

Nevertheless, DHMM based schemes are normally associated with information loss
as they require such discretization process to fit the continuous-valued measure-
ments or observed signal into the DHMM scheme. However, due to information
loss the performance of the DHMM based scheme is decreased irrespective of its
application. For example, during vector quantization of speech signals, degradation
in its performance as a speech recognizer occurs [46]. It is known that a DHMM
based scheme is best suited for applications where discretization does not introduce
any significant loss; such as object [47] and gesture recognition [48]. Furthermore,
the available prediction approaches in literature, stated in Section 1.4, are based
on utilizing time-domain signals after conventional subband filtering, which prevent
those predictors from fully exploiting the received signal [2]. In addition, none of
the available spectrum occupancy prediction schemes in literature have considered
the interdependencies between neighboring subbands into a suitable model nor in
the prediction decision

This work proposes a novel first-order continuous HMM (CHMM) based spectrum
occupancy prediction scheme as a more natural and an alternative approach to
the conventional DHMM scheme. Within this approach, the SU receiver employs
a proper TFR method to efficiently explore the TF characteristics of the received
signal. For this purpose, a properly designed DFT-FB has to be considered within
the SU transceiver structure, such that the observed signal at the output of the AFB
at the SU receiver is utilized directly. Thus, spectrum sensing, spectrum occupancy
prediction, and spectrum access are efficiently implemented in one structure [25].

For performance comparison purposes, a first-order DHMM based TF spectrum oc-
cupancy prediction scheme is implemented in this work. To fit the signal at the
output of the AFB into the DHMM based scheme, a Neyman-Pearson (NP) test
is utilized as part of its implementation. For both DHMM and CHMM based pre-
diction schemes, the neighboring subbands are considered mutually independently
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occupied by the PU signal. Hence, the prediction schemes have been performed at
each subband separately as presented in a previous work in [2].

Subsequently, due to its superior performance, the proposed CHMM based predic-
tion scheme is expanded in the form of a lag-one first-order coupled CHMM based
scheme which takes into account the interdependencies between neighboring sub-
bands for modeling and prediction purposes. It is worth mentioning at this point
that none of the prediction schemes available in literature have considered the inter-
dependencies between adjacent subbands. In this work, the future occupancy state
of a certain subband depends on its current state as well as the current state of its
neighboring subbands, which are later referred to as the parent subbands or nodes.

As the CCI plays a significant role in defining the performance of wireless networks
[49], its impact cannot be neglected in this work. Therefore, simulations have been
conducted in a previous work in [1] to obtain the CCI signal arising from multiple
transmitters simultaneously utilizing the same subband. Thus, the performance
of the presented prediction schemes has been evaluated in the form of probability
of error due to wrong predictions in different environments characterized by the
signal-to-noise ratio (SNR) as well as the signal-to-interference ratio (SIR).

1.6. Outline

After stating the motivation behind this work in Chapter 1 along with the significant
part played by spectrum occupancy prediction in CRNs, Chapter 2 presents the
important concepts and tools for this work. Chapter 3 presents a short literature
overview of the standards operating in the ISM band and their mutual interference
while coexisting in the same area and interference spatial modeling. Furthermore,
the SU transceiver structure is presented in Chapter 4, along with the considered
TFR method. Additionally, modeling the CCI signal based on a previous work in
[1] is also explained in Chapter 4.

The proposed (uncoupled) CHMM based TF spectrum occupancy prediction scheme
for a system of independent subbands is introduced in Chapter 5, as well as the con-
ventional widely used DHMM based scheme. This chapter is based on a previous

9



1. Introduction

work found in [2]. Chapter 6 presents a novel approach for a system of dependent sub-
bands in the form of a lag-one first-order coupled CHMM based prediction scheme.
This scheme can be considered as a generalization of the CHMM based scheme.

Performance evaluation and simulation consideration of the prediction schemes are
presented in Chapter 7, where a comparison between the reliability of those schemes
is drawn in the form of the probability of error or wrong prediction in an interference
based environment. Furthermore, the main parameters affecting the reliability of
the presented schemes are also discussed.

Finally, conclusions, drawbacks, wireless traffic characteristics along with open issues
and further considerations are collected in Chapter 8. Useful concepts, derivations,
and algorithms can be found in Appendix A and Appendix B.
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2
Chapter 2.

Mathematical Notations and

Markov Models

After presenting the motivation behind this work and its contribution with respect
to the available state of the art approaches, this chapter presents the main concepts
and tools to prepare the reader for the following chapters in this work. First, it
defines the mathematical notations followed in this work. Second, it presents the
main concepts behind graphical models and their types and forms reaching to hidden
Markov models. Those concepts are to be put to use in the following chapters.

2.1. Notations

Throughout this work, the capital characters X and X denote random variables, and
the small characters x and x are realizations or deterministic quantities. Boldface
characters define matrices of suitable dimensions including vectors and non-boldface
characters denote scalars. For an arbitrary random variable X, the following ex-
pressions: Pr {X}, Pr {X| Y }, E {X}, and |X| denote the probability of X, its
conditional probability given an arbitrary random variable Y , its expectation, and
its absolute value, respectively. The notations Xt, Xt, xt and xt denote the random
process and the corresponding realization observed at slot t, where t in this work
refers to a time slot, a frequency slots, or a location, when appropriate. In this
work, while representing random processes graphically in terms of graph models,
the known processes have been graphically presented as shadowed nodes. Further
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explanations in this regard are shown in this chapter. Moreover, det A, diag (A)
denote the determinant of any arbitrary matrix A and its diagonal as a column
vector, respectively. The transpose and the Hermitian transpose of matrix A are
given by AT, and A†, respectively. IK is a K × K identity matrix, where K is a
positive integer.

An example of discrete time signals is given in the form of f [n], where n ∈ Z through-
out this work denotes a discrete time index. Its z-transform is denoted as F (z) and
given by

F (z) =
∑
n∈Z

f [n] z−n.

In this work, the complex conjugate of a function f [n] is given by f ∗ [n]. The
projection of an arbitrary discrete value function or vector f1 [n] onto another one
f2 [n] via the inner product is denoted by 〈f1 [n] , f2 [n]〉.

The Cartesian product of any arbitrary two closed sets Υ1 and Υ2 is given by

Υ1 × Υ2 = {(υ1, υ2) | υ1 ∈ Υ1, υ2 ∈ Υ2} .

Furthermore, pX(x) ∼ N (x; μ, Σ) is the probability density function (PDF) of a
real-valued Lx-variate Gaussian random vector X of length Lx ∈ N, where x is a
realization of X. The PDF’s mean vector is given by μ and its covariance matrix by
Σ. The expression pY (y) ∼ N (y; μ, σ2) denotes a real-valued univariate Gaussian
distribution of the random variable Y taking a value Y = y with an expected value
E {Y } = μ and a variance σ2. On the other hand, pZ(z) ∼ CN (z ; μ, Σ) represents
a complex-valued (bivariate) Gaussian mixture model (GMM), where z = zr + jzi is
a realization of the complex process Y , such that zr = � {z} and zi = � {z}, with
j2 = −1.

Finally, an estimate of a quantity a is represented by â, and â(m) represents the mth

update of â after m iterations.
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2.2. Basic Concepts

The signal observed at the SU receiver over time can be considered as an example
of time series data, such as daily closing stock prices, annual precipitations, and
so on. Hence, probability theory serves as a powerful tool for characterization and
analysis purposes by means of modeling such sequential data in the form of stochastic
processes [50]. Moreover, combining probability theory with graph theory provides
the ability to model and represent a dynamic system of multiple processes graphically.
Their behavior and interactions are captured graphically in the form of joint and
conditional distributions [51] in a so-called probabilistic graphical network or simply
graphical model [52]. Please refer to [52, 53] for further explanations regarding graph
theory.

A graphical model consists of nodes representing random variables and links con-
necting those nodes based on their probabilistic relationship. Those relations are
narrowed down in the form of the sum and product rules, which are the elementary
rules of probability theory [52].

For any two discrete random variables X and Y , Pr {X} is described via the sum
rule as

Pr {X = x0} =
∑
y0

Pr {X = x0, Y = y0} , (2.1)

which is also known as the marginal probability. On the other hand, Pr {X, Y } is
obtained via the the product as

Pr {X = x0, Y = y0} = Pr {Y = y0| X = x0} Pr {X = x0} . (2.2)

Figure 2.1 represents the different types of graphical models based on the type of
their links [54, 52]. A graphical network could either be directed or undirected. On
the other hand, graphs such as clique tree, factor graph, chain tree, etc., do not
belong to any of those classes [51], and they are referred to as “others” in Figure 2.1.

The links in the directed graphical networks (DGNs) are displayed by arrows head-
ing from one node to another, where the former is usually referred to as a parent

13



2. Mathematical Notations and Markov Models

Probabilistic Graphical
Networks

Undirected Graphical
Networks
(UGNs)

Directed Graphical
Networks

DGNs
Others

Bayesian
Networks

(BNs)

Dynamic
Bayesian
Networks
(DBNs)

Linear Gaussian State
Space Models

(Kalman Filter Models)

Hidden Markov
Models

(HMMs)

Mixture Models

Regression Models

Dimensionality
Reduction

Figure 2.1.: A hierarchical representation of the different derivations of probabilistic graphical mod-
els.

node and the latter as a child node. Those links represent the conditional rela-
tion between the two nodes [52] as to be discussed onwards, as well as the model’s
causality [55]. Moreover, Bayesian networks (BNs), also known as Belief networks
or Bayes networks, are a form of DGNs, yet adding the time factor introduces the so-
called dynamic Bayesian networks (DBNs). Therefore, they are suitable to model
sequential observations or data [55, 52]. The conditional relation between the nodes
in a DBN is usually presented in the form of a conditional probability table [51].
On the other hand, such time stamps and direction orientated links are missing in
undirected graphical networks (UGNs). Thus, a Markov random field, which is a
well-known example of an UGN, is suitable for image modeling rather than time
series analysis.

Figure 2.2 shows an example of both DGN and UGN. The graph to the right rep-
resents a DGN consisting of four nodes: E, F, G, and H representing four different
discrete random variables. Based on the description mentioned earlier, node E is
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A B

C D

E F

G H

Figure 2.2.: Undirected (left) and directed (right) graphical models.

the parent node for both F and G, as both nodes are conditioned on E, whereas
the nodes F and G are child nodes. Correspondingly, the joint probability can be
directly deduced from the graph itself and expressed in the form of the product rule
as

Pr {E, F, G, H} = Pr {E} Pr {F | E} Pr {H| F} Pr {G| E} .

On the other hand, the graph to the left in Figure 2.2 represents an UGN with the
parent-child node relation is absent as the connected nodes reciprocally conditioned
on each other. Therefore, the term blanket is defined for each node which describes
the set of nodes that make a node conditionally independent from the rest of the
nodes in a graph [55]. Given the example shown in Figure 2.2, node A is conditionally
independent of all the nodes in the graph given its blanket defined by nodes B and
C. Further explanation with regard to this is found in [51, 52, 55].

An important quality or rather a restriction of the discussed DGNs is that they
must be acyclic. In other words, by moving between the nodes along with the in-
dicated arrows, a closed path does not occur or create [52]. Therefore, they can
also be referred to as directed acyclic graphs (DAGs). Figure 2.3 represents a DAG
consisting of nodes I, J, O, P and T as discrete random variables. The correspond-
ing joint probability Pr {I, J, O, P, T} can be factorized based on their parent-child
relationship as

Pr {I, J, O, P, T} = Pr {I} Pr {J} Pr {O| I} Pr {P | J} Pr {T | O, P } .

Furthermore, there are two important derivations of DBN as shown in Figure 2.1,
namely, Kalman filter models as linear Gaussian state space models and HMMs [41].
Generally, a HMM scheme combines two processes: discrete hidden (unknown) states
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I J

O P

T

Figure 2.3.: An example of a DAG.

as Markov process and shown (known) observations as another process. In this work,
known processes have been represented graphically as shadowed nodes. A HMM
is actually capable of modeling both discrete observations as in DHMM scheme,
also continuous observations as in CHMM scheme. In both cases, the observations
are conditioned on the hidden states [41]. Moreover, the observations in DHMM
schemes belong to a set of alphabets or symbols modeled as a discrete random
process. However, the continuous observations are modeled as conditional PDFs in
CHMM schemes. Nevertheless, the main difference between HMM and Kalman filter
models is the type of processes representing the underlying states of each model: as
a Kalman filter is capable of modeling both discrete and continuous states, HMM
can only model discrete states [41]. Further derivations of BN, as mixture models,
are also mentioned in Figure 2.1.

As an example of a DBN, a HMM scheme can be expressed via graphs, irrespective
of the nature of its observations. Unlike a Markov chain [55], the correlation between
the observations and the states is interpreted by the transition between the hidden
states over time.

Furthermore, HMM is basically governed by the so-called Markov property (or as-
sumption), also referred to as the (first-order) Markov assumption [55]. It declares
the relation between a present hidden state with respect to the model’s history, i.e.,
represents the transition probabilities between states [41]. Figure 2.4 shows a first-
order (top) and a second-order (bottom) DHMM scheme, with x and y representing
the realizations of the hidden state as a discrete Markov process X and the corre-
sponding observation as the discrete process Y , respectively over time. As n ∈ Z
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x1 x2 x3 x4

y1 y2 y3 y4

x5 x6 x7 x8

y5 y6 y7 y8

. . .

. . .

Figure 2.4.: A graphical model representing a first-order (top) and a second-order (bottom) DHMM
schemes.

denotes the discrete time index of the observations, the conditional probability of
state xn given the model’s history in the first-order scheme is given by

Pr {xn| xn−1, xn−2, . . . } = Pr {xn| xn−1} , (2.3)

which also declares Markov assumption since the state at a certain time depends
only on its previous state and irrespective of the system’s history. On the other
hand, this assumption is slightly relaxed for higher-order HMM schemes, yet the
state dependencies in the second-order scheme is given by

Pr {xn| xn−1, xn−2, xn−3, xn−4, . . . } = Pr {xn| xn−1, xn−2} . (2.4)

Similarly, the conditional relations in (2.3) and (2.4) are applicable to the CHMM
scheme and can be extended to even higher-order schemes. However, the computa-
tional complexity is expected to be increased.

Despite the nature of the modeled observations, there are two types of HMM schemes:
left-to-right and ergodic models. They both differ with respect to the stationarity of
the underlying system, which can be represented as extra restrictions to the possible
transitions among the hidden states. In the next time step within the left-to-right
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HMM scheme, the model may either remain at its same current state or change to
a new one, however it does not earn back a past state. In other words, it has a self-
and a left-to-right-transition [56]. Such models are best suited to represent transient
processes and are widely used to model the beginning and the end of speech signals
[56]. Nevertheless, this work assumes that the stationarity assumption is applied to
the wireless environment, hence we focus on the most popular ergodic models which
have no extra restrictions on their states over time.

Furthermore, representing HMM scheme graphically similar to a DBN helps to

• deduce a probabilistic expression of the whole model based on a simple dia-
gram, and

• understand the conditional dependencies and conditional independencies be-
tween the underlying processes,

it also becomes much easier to create different models which are actually derived
from a simple HMM scheme [54], irrespective of its order. For example, the memory
in an autoregressive HMM (AR-HMM), shown in Figure 2.5, is introduced in the
observation-domain as well as the state-domain. In other words, the observed se-
quence of the discrete process Y is not i.i.d unlike the schemes presented in Figure 2.4,
and yn−1 helps to predict yn.

x1 x2 x3 x4

y1 y2 y3 y4 . . .

. . .

Figure 2.5.: A graph model representing AR-HMM.

Furthermore, an input-output HMM (IO-HMM) in Figure 2.6 represents a proba-
bilistic mapper that maps a certain discrete input process U to another Y . In
comparison to (2.3), the transition probability between the system states is hence
expressed by Pr {xn| xn−1, un}.
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x1 x2 x3 x4

y1 y2 y3 y4

u1 u2 u3 u4 . . .

. . .

. . .

Figure 2.6.: A graph model representing IO-HMM.

A factorial HMM (FHMM) consists of multiple states and an observed sequence
which is conditioned on those states. For D ∈ N number of Markov chains, the
expression

Pr {xn,d| xn−1,d} (2.5)

is valid, where d = {1, . . . , D}. Upon conditioning on the observations those states
are coupled [54]. Thus, the discrete observation process Y depends on a vector of
states, such that Pr {yn| xn,1, . . . , xn,D}. Figure 2.7 shows an example of a FHMM
scheme for D = 3 chains.

x1,3 x2,3 x3,3 x4,3

x1,2 x2,2 x3,2 x4,2

x1,1 x2,1 x3,1 x4,1

y1 y2 y3 y4

. . .

. . .

. . .

. . .

Figure 2.7.: A FHMM with D = 3 chains.

Note that in the previously given HMM examples, the states are unknown, and
Modeling a single process is usually appropriate via a single HMM scheme, however
limitations arise when modeling multiple interacting processes. Neither a single
HMM scheme nor its previously mentioned derivations are suitable for this task.

19



2. Mathematical Notations and Markov Models

Such limitations are introduced first, due to the Markov assumption governing the
HMM scheme, as in (2.3) – or lightly relaxed for higher-order schemes as in (2.4).
Second, due to limited system memory and number of states [57].

Thus, given two Markov states processes Xn,1 and Xn,2 each along with the corre-
sponding observation process Yn,1 and Yn,2, respectively, a coupled HMM scheme,
shown in Figure 2.8, can be formulated by relaxing the Markov assumption [57] to
include neighboring or adjacent chains, such that Pr {Xn,1| Xn−1,1, Xn−1,2}.

y1,1 y1,2 y1,3 y1,4

y1,2 y2,2 y3,2 y4,2

x1,1 x2,1 x3,1 x4,1

x1,2 x2,2 x3,2 x4,2

. . .

. . .

. . .

. . .

Figure 2.8.: A first-order coupled HMM with two chains.

Different from (2.5), such a coupled HMM scheme is capable of modeling multi-
ple interacting processes and can easily overcome the previously mentioned limi-
tations. Furthermore, being a generalization or a natural expansion of the single
HMM scheme, a coupled scheme is a suitable approach to model a dynamic system
of multiple interacting processes, and it is capable of modeling both discrete and
continuous observations.
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Chapter 3.

Coexistence in the ISM Band

and Interference Spatial

Modeling in Literature

The unlicensed spectrum resources, known as the ISM band, have been widely used
as a medium for (short-range) communication technologies in industrial applications,
controlling remote applications, sensor networks, and medical operations. Although
Part 15 rules of the Federal Communications Commission (FCC) [58] govern trans-
mitting over the ISM band with respect to the maximum output power, its users
suffer from performance degradation due to the presence of CCI arising from mul-
tiple users from different technologies simultaneously transmitting over the same
channel. There is no prior planning among users in the ISM band with respect to
channel allocation, transmitted power, etc. Therefore, coexistence mechanisms have
been subject to investigation over the years to mitigate the interference arising in
the ISM band [5].

A short overview of the available technologies operating in the 2.4 GHz ISM band
is presented in this chapter based on the available literature, the coexistence mecha-
nism, as well as their mutual interference. Home environment technologies operating
over the 2.4 GHz ISM band, including microwave ovens and cordless phones, have
not been taken into consideration here due to their negligible effect [59]. Further-
more, different spatial interference models have been presented in this chapter.
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3.1. Standards in 2.4 GHz ISM Band

1. ZigBee

ZigBee is a communication protocol suitable for short-range, low power and
data throughput applications, as well as applications with long battery life
requirements. It is commonly used in sensor networks, remote control ap-
plications and medical devices in which the information is transmitted wire-
lessly over the ISM spectrum band. For further investigation please refer
to [59, 60]. The PHY along with the MAC layers of the Open System In-
terconnect (OSI) stack are both based on the IEEE 802.15.4 standard. It
operates in the 2.4 GHz ISM band using the orthogonal quadratic phase
shift keying (OQPSK) modulation, with transmission power usually up to
0 dBm over a 100 m range at a rate of 250 Kbps [61, 62]. It transmits
over 16 non-overlapping channels each with 2 MHz bandwidth with an off-
set between central frequencies which reaches up to 5 MHz [61, 62]. Fur-
thermore, to make sure a wireless channel is not occupied by other users,
clear channel assessment (CCA) is first performed prior to transmission, which
is based on carrier sense multiple access/collision avoidance (CSMA/CA)
mechanism [63, 64].

In general, the ZigBee node is considered to be a weak interferer to other
protocols within the 2.4 GHz ISM band, thanks to its very low duty cycle
which ensures longer battery life. A device’s duty cycle is defined as “the ratio
of time it is active to the total time” [59]. A ZigBee’s duty cycle is typically
less than 1%, in which the device checks the availability of a channel through
CCA and transmits its packet only within a few milliseconds [59]. Thus, both
CCA and (OQPSK) ensure coexistence with other protocols within the ISM
band [63].

2. Wireless Local Area Network

The Wireless Local Area Network (WLAN) is a technology which is based
on the family of IEEE 802.11x standards, namely IEEE 802.11b/g/n in
the 2.4 GHz ISM band. Its transmission rate varies from 11 Mbps for
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IEEE 802.11b reaching up to 54 Mbps for IEEE 802.11g/n [65] over a
100 m range and transmission power up to 30 dBm [59]. It transmits
over a total of 14 overlapped channels each with 22 MHz bandwidth and
5 MHz separation. Among the 14 channels, only 3 of them are non-
overlapped. Their PHY is designed such that IEEE 802.11b uses the
direct sequence spread spectrum (DSSS) technique based on the complemen-
tary code keying modulation (CCK), whereas IEEE 802.11g employs an
OFDM modulation, as implemented in the 5 GHz ISM band IEEE 802.11a
standard [65].

In order to coexist with other protocols, a WLAN device em-
ploys CSMA/CA as a channel access technique based on a
distributed coordination function (DCF) mechanism [65]. In other words,
each WLAN node checks if a specific channel is idle before transmission.
If a channel is indeed idle for a certain duration of time, usually called
DCF interframe space (DIFS) period, the WLAN node transmits its packets
immediately. Otherwise, it is postponed until the end of the current trans-
mission. Plus, it waits for an additional DIFS interval called a backoff timer
until it re-attempts to sense the channel. The randomly generated backoff
timer is between 0 and a contention window (CW) [66]. The size of the CW
increases (doubled) whenever the transmission is not successfully performed,
and each time the node’s transmission defers [66, 65].

Furthermore, multiple input multiple output-OFDM (MIMO-OFDM) tech-
niques were adapted in 2009 by the Task Group n (TGn), as part of the
IEEE 802.11n standard. It enables spatial diversity multiplexing (SDM) to
increase throughput up to 100 Mbps and a transmission range up to 250 m
[65]. This standard also operates over the ISM band with 40 MHz channels
divided into 128 subcarriers. However, the usual 20 MHz channels are used
whenever limitations are presented in the available spectrum [67].

3. Bluetooth

This wireless standard has been developed by Ericsson along with another
four companies: IBM, Intel, Nokia, and Toshiba, forming the Special In-
terest Group (SIG) in 1998 [65]. It is characterized by its low power con-
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sumption and short range operation with no more than 10 m [65]. It trans-
mits up to 1 mW with a rate of 1 Mbps, over a total of 79 radio frequency
(RF) channels each with 1 MHz bandwidth. Its signal is modulated using
the binary Gaussian frequency shift keying (BGFSK) [68]. Furthermore,
a time division multiplexing (TDM) technique is employed by dividing each
channel into 625 μs slots. Among the 79 channels, only one is defined or cho-
sen based on a unique pseudo-random frequency hopping sequence determined
by a master device – known as piconet – with a maximum of 1600 hops per
second [68, 59]. This mechanism helps to reduce the interference with active
devices operating in the same band.

4. WirelessHART

Wireless Highway Addressable Remote Transducer (wirelessHART) was the
first open wireless communication standard introduced in 2007 as the wireless
expansion of the wired Highway Addressable Remote Transducer (HART) 7
protocol [69, 70]. It is a flexible, low cost, robust, and scalable protocol for fac-
tory automation industrial and controlling applications. It transmits very low
power signals to avoid possible interference scenarios with existing protocols
[69].

Its PHY layer is designed based on the IEEE 802.15.4-2006 standard and
operates over the 2.4 GHz ISM band [71, 72]. Similar to ZigBee, it em-
ploys DSSS modulation to transmit with a rate of 250 kbps over 15 chan-
nels each with 2 MHz bandwidth and 5 MHz central offset frequency [73].
However, different from IEEE 802.15.4-2006, the channel is chosen randomly
based on a pseudo-random frequency hopping mechanism in order to mini-
mize the interference within the network [70, 74]. Furthermore, it utilizes
Time Division Medium Access (TDMA) as well as CSMA as access mecha-
nisms [71].

The simulation conducted in [73] has shown that wirelessHART affects the
performance of the IEEE 802.11g by increasing the number of dropped packets
due to a collision. However, this problem can be eliminated by introducing a
slow frequency hopping scheme as well as enabling a blacklist feature. Via its
blacklist feature, wirelessHART devices label those channels which are to be
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avoided due to coexisting with other networks [70, 74]. Thus, wirelessHART
can apparently coexist with other protocols in the 2.4 GHz ISM band without
behaving as an interferer to other networks nor reduce its QoS.

3.2. Mutual Interference in the ISM Band

The performance of any wireless network in the presence of interferers is subject to
different network topology and PHY-related parameters, such as modulation type,
spread spectrum and frequency hopping rate, traffic characteristics, packet size and
transmitted power [75]. Among the different standards, the mutual interference
between WLAN and ZigBee are the most investigated in the literature [76, 63, 62].
Thus, the possible mutual interference scenarios within the different protocols in the
2.4 GHz ISM band are briefly presented as follows:

• Mutual Interference Between WLAN and ZigBee
Due to the absence of channel allocation planning, protocols such as ZigBee
which operate at low power and low transmission rate values are victims which
suffer from other existing interferers. On the other hand, as a WLAN node
transmits at relatively high power values, it is mostly considered as an inter-
ferer. Yet its performance can still suffer from degradation due to the presence
of a ZigBee node. Furthermore, [76] has proven that irrespective of the Zig-
Bee’s duty cycle, a WLAN’s access point is capable of locating a channel to
transmit without disturbances or cuts. Following are some remarks pertaining
to when WLAN node acts as an interferer to a ZigBee node:

1. Approximately 90% of ZigBee packets are destroyed due to WLAN trans-
mission when both of them utilize overlapping channels. Specifically,
when WLAN transmits over channel 6 (2437 MHz) and ZigBee over chan-
nel 16 (2440 MHz) [63, 62].

2. ZigBee suffers from packet loss when WLAN transmits over variate
(mainly higher) transmission rates [75].

25



3. Coexistence and Interference Spatial Modeling in Literature

3. Based on different experiments conducted in [67], ZigBee nodes suf-
fer the most due to a heavy loaded IEEE 802.11n traffic rather than
IEEE 802.11g. Since IEEE802.11n operates over relatively broad chan-
nels, it can easily reduce the quality of transmission of a near ZigBee
node [67].

The main considerations when ZigBee nodes are causing interference to WLAN
nodes are summarized based on the following points:

1. The distance between the interferer’s transmitter and the victim’s receiver
is an important parameter. It is shown in [76] that the performance of a
WLAN device is reduced when the distance between the WLAN’s receiver
and the ZigBee’s transmitter is small.

2. Irrespective of the availability of a ZigBee node, it has been noticed in
[76] that the performance of a WLAN node is also a function of its packet
size. The larger the size of its packet, the worse its performance may be.

3. Both protocols perform CSMA/CA as they sense the environment before
transmitting. However, ZigBee is much slower in avoiding collisions given
its sensing slot is 320 μs compared to WLAN’s 20 μs [62].

4. Experiments conducted in [77] show that WLAN’s upper link is affected
by the presence of ZigBee more than its downlink.

• Mutual Interference Between WLAN and Bluetooth
The mutual interference between WLAN and Bluetooth is basically a function
of time and frequency overlapping. It occurs when Bluetooth’s frequency hop-
ping system chooses a channel which occupies 1 MHz of the WLAN’s 22 MHz
channel [68, 78]. Another important factor to consider is the distance between
the two devices [79]. Thus, the degradation in their performance is (10-20)%
for both networks. Furthermore, the packet error increases when WLAN trans-
mits large packets in the presence of an active Bluetooth piconet [80].

• Mutual Interference Between Bluetooth and ZigBee
As it has been discussed in [63], no significant packet corruption results due
to the coexistence of ZigBee and Bluetooth. The frequency hopping scheme
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in Bluetooth is capable of marking a channel as bad due to the presence of
interference, a maximum chance of mutual interference between ZigBee and
Bluetooth is up to 4% [59].

3.3. Point Processes for Interference Spatial

Modeling

Interference has been subject to investigations and research, especially in the
crowded ISM band. Aside from thermal noise, interference is an important parame-
ter which has to be taken into account, as it is able to limit a network’s performance
under heavy interference conditions. As clearly explained in [49], variables such as
channel allocation and maximum power transmission are controlled by users within
the same network, thus any possible interference arising between homogeneous users
can be easily eliminated. However, emerging new technologies and networks have
made interference elimination a difficult task. This is due to the fact that each net-
work such as ad hoc, mesh, and sensor networks, has its own specifications including
transceiver configurations, channel access schemes, and transmitted power levels.

A Gaussian process has been utilized in signal processing and wireless communica-
tion fields to model the noise and/or interference in a certain wireless environment.
Since no exact prior knowledge of the noise and/or interference can be collected,
the Gaussian assumption is widely considered as it is applicable to the central limit
theorem [81, 82]. Furthermore, the Gaussian process is relatively easy to handle;
the linear superposition of multiple Gaussian processes are also Gaussian as well
as linearly mapping a Gaussian process is also a Gaussian [52, 81]. Hence, many
techniques and algorithms have been derived based on this assumption, such as the
widely known Kalman filter [83].

Nevertheless, the Gaussian assumption is not entirely an accurate approach to model
noise and/or interference, due to the presence of impulsive and heavy-tailed char-
acteristics [84, 85, 86, 87, 82] in the form of sharp spikes and occasional bursts
in its observations and measurements [88]. Hence, noise and/or interference are
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actually far from being Gaussian in many different environments, such as underwa-
ter environments, telephony, man-made noise and indoor wireless communication
[88, 89, 90, 91, 92, 93].

The non-Gaussian CCI created between users from different networks is basically
subject to uncertainty and randomness due to the following factors [94, 95]:

1. Radio propagation effect on the received signal, such as path loss effect, small-
scale and large-scale propagation.

2. Spatial location of interferers and their activities in the network area. The
superposition of interference signals affecting a receiver node depends on the
geometrical location of the concurrently transmitting interferers within a cer-
tain area. For example, the total amount of damage decreases as the distance
to the interferer nodes increases [95, 96].

3. Network operation mode as it defines the followed medium access control
scheme, such as CSMA and ALOHA.

As the CCI is a function of the network geometry [97], modeling the interference
spatially is an important aspect to build an idea behind the performance of the wire-
less network. Hence, principles of stochastic geometry and point processes come in
handy. They describe a set of random objects or nodes within finite dimensions (one,
two or higher) in a statistical model or approach [98]. As part of their applications,
different spatial interference models and outage characterizations have been subject
to investigations over decades [96].

Starting with simple models with equally affecting interferers, models with deter-
ministic interferer locations as well as shot noise models, research has led to the
well-known Poisson networks where interfering nodes are distributed as a homoge-
neous Poisson point process (PPP) [99, 100, 101]. Due to its flexibility, it has been
by far the most popular interference model [49], especially within CSMA/CA net-
works [100, 102, 103]. The following describes the PPP along with its drawbacks.
Afterwards, an alternative approach which has been considered within this work is
subsequently presented.
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• Poisson Point Process

Given a network occupying a R
2 plane of area AP with a node intensity

ξP (nodes/area) for a PPP network, the random variable NP∈ N, represent-
ing the independent and uniformly (homogeneously) located number of nodes,
follows a Poisson distribution as [95, 98, 102]

Pr {NP = nP} = ηnP

nP!
e−η, for nP = 0, 1, 2, . . .

where nP is a realization of NP, and η is the distribution’s mean value for a
given ξP, it is given by η = ξP (AP).

Let ΦP denote a PPP network characterized as [104, 105]

ΦP = {(πiP , (eiP , piP))}

where

– The set ΦP = {πiP} denotes the location of the independently scattered
nodes [98], where iP ∈ {1, . . . , NP} refers to the node’s index. In other
words, πiP denotes the location of the ith

P node,

– {eiP}iP
is the medium access indicator. The ith

P node is a transmitter if
eiP = 1, whereas it is a potential receiver if eiP = 0,

– and, piP is the transmission power of the ith
P node whose eiP = 1 (i.e., a

transmitter node).

Nevertheless, the assumptions underneath the PPP are actually far from being
applicable to characterize the interference in CSMA/CA networks in real-life
scenarios. This can be due to the following reasons:

1. PPP is not a valid model if the number of nodes NP is known. As NP is
a Poisson random variable in a PPP network, its realization may reflect
either more nodes than reality or even zero nodes [106]. For this reason,
PPP does not accurately model a network with a small number of nodes.
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2. The node independency assumption is also inaccurate since it fails to
capture the case if all the NP nodes are gathered in one location in the
network [106].

3. The homogenous assumption, which indicates that the network intensity
does not depend on the location of the nodes [96], is inapplicable to model
practical networks [95, 107]. As networks, in reality, cover a finite area,
nodes located near the center suffer from a higher amount of interference
than those located at the boundaries.

4. The nodes in a realistic network are more structured than being entirely
random. As an active transmitter in a CSMA/CA network actually first
listens to the channel before transmission, a prohibited region is created
around the transmitter [95]. Thus, the interferers are actually far from
being randomly localized.

• Matérn Point Process

Based on the homogenous and independency weaknesses discussed earlier, a
Binomial Point Process (BPP) has been considered as an alternative approach
[106] in order to model a more structured network, where nodes are not in-
dependent [98]. However, there is no common probability density function
to characterize this assumption statistically. In order to overcome this issue,
the investigation carried out in some literature concerning the BPP is instead
performed based on moment generating functions [106, 95].

In view of the CSMA/CA mode, a so-called Matérn point process II, or Matérn
hard-core process. It has been utilized to model nodes spatially in a CSMA/CA
network as a more appropriate approach describing users in such networks
[108, 105]. It is formulated by applying a thinning (extra condition) on nodes
in ΦP, such that nodes are forbidden to lie closer to each other than a certain
minimum distance RM, such that RM > 0 [100].

For this matter, each node πiP ∈ ΦP is independently labeled by a random
identifier m (πiP) drawn uniformly between (0, 1) [95, 98]. The node πiP also
belongs to a Matérn hard-core process, denoted by ΦM, if there is no other
node from ΦP whose identifier value is smaller than the identifier of node πiP
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in an circle defined by BM (πiP , RM), of center πiP and radius RM. This can be
expressed by [98]

ΦM =
{
πiP ∈ ΦP : m (πiP) < m

(
πi′

P

)
∀ πi′

P
∈ ΦP ∩ BM (πiP , RM) \ πiP

}
. (3.1)

Based on (3.1), any node which belongs to ΦM is separated by at least a
minimum distance RM from the next available node. This coincides with the
behavior of transceivers in a CSMA/CA network. Unlike BPP, a Matérn hard-
core process results in a so-called symmetric α-stable statistical distribution,
which represents statistically the interference signal at a certain receiver [95].
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Chapter 4.

System Description

This chapter presents the system model considered in this work. Similar to spectrum
sensing, spectrum occupancy prediction schemes are to be implemented in the SU
receiver. On the other hand, different from the prediction schemes presented in
Section 1.4, the SU transceiver structure presented in this work utilizes a proper
TFR method. Hence, the received signal is efficiently and fully exploited in order
to be employed in a proper spectrum occupancy prediction scheme based on the
interdependencies between adjacent subbands.

Before dealing with spectrum occupancy schemes, signal representation methods are
initially discussed. TFR is an important concept in signal processing, as it is capable
of accurately and efficiently analyzing signals with time-varying frequency content
[109]. By means of TFR methods, a signal can be viewed in a two-dimensional TF
grid in order to examine its features for further processing. Mathematically speaking,
this is equivalent to a joint function of two variables: time and frequency [110].
Furthermore, there are two TFR classes or methods in literature: first, linear TFR
methods such as the short-time Fourier transform (STFT), wavelet transform and
Gabor expansion, which obey the basic superposition principle [110, 111]; second,
quadratic TFR methods including distributions of energy and correlation of signals,
such as the Wigner distribution and the ambiguity function, respectively. [109, 110].

In this work, the SU transceiver has been considered to utilize a properly de-
signed DFT-FB as a direct implementation of Gabor expansion linear representation
method. Hence, the conventional subband filtering mechanisms, which introduce in-
formation loss, can be eliminated [2]. Since this work focuses on spectrum occupancy
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prediction mechanisms, a short overview of the considered TFR method; i.e., Ga-
bor expansion, is presented briefly in this chapter, along with the SU transceiver
structure. Further information with regard to this topic is available in [24, 110].

Furthermore, being an important parameter affecting the network’s performance
[95, 49, 84], modeling the CCI has also been considered in this chapter. Based on
the work in [1], the CCI signal arising from multiple transmitters utilizing the same
channel simultaneously in a CSMA/CA network actually follows a Matérn hard-core
spatial distribution. The resulting CCI signal in [1] is approximated by a proper
statistical and parametric model.

4.1. Gabor Expansion

Gabor expansion, also referred to as Gabor analysis, ideologically represents a (con-
tinuous or discrete) time-domain signal into its TF characteristics, known as TF
Gabor coefficients. These coefficients are obtained via a family of TF functions cre-
ated by time-shifting and frequency-modulating a certain window function or pulse,
which is referred to as Gabor atom [24, 111].

The Gabor coefficients are represented in a joint TF grid which is defined based on
two positive integer constants: K and M . Their ratio, known as the TF sampling
density [24], defines the size of the TF grid. This aspect is out of the scope of this
work, therefore we disregard the different TF sampling cases and directly consider
K = M in a critically sampled TF grid Λ defined by

Λ = Z × Δ,

where Δ is give by Δ = {0, . . . , K − 1}. Moreover, given the discrete Gabor atom
or pulse g [n]∈ L2 (Z) of length Lg ∈ N, with n ∈ Z, the family of functions g�,k [n]
is denoted by

{g�,k [n] : (�, k) ∈ Λ} (4.1)

are derived by �.K-time translating and k/K-frequency modulating the atom g [n].
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The critically sampled Gabor system g�,k [n] is defined as

g�,k [n] = g [n − �K] ej 2πkn
K .

The TF coefficients of an arbitrary discrete-time signal C [n], namely C�,k, are ob-
tained by projecting C [n] into the family of functions in (4.1) as

C�,k = 〈C [n] , g∗
�,k [n]〉 =

∑
n∈Z

C [n] g∗
�,k [n] ,

with g∗
�,k [n] representing the complex conjugate of g�,k [n]. Figure 4.1 demonstrates

a critically sampled TF grid.

. . .
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2π K 4π K 6π K 2π
(K

−1
)

K
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Figure 4.1.: A critically sampled TF grid.

Due to their similarities, a DFT-FB can be utilized to efficiently implement a Gabor
system [112, 24, 110, 111]. This can be achieved by properly designing the filter’s
prototype based on the family of functions defined in (4.1) [112]. Moreover, FBMC
based communication, in particular DFT-FB, has been widely utilized in signal
processing and particularly in CRN due to the following reasons:

1. FB has shown robust performance by mitigating both CCI and ISI [24, 113, 25].

2. FFT techniques can reduce the complexity of FB’s implementation with re-
spect to other implementation approaches [114, 115].

35



4. System Description

3. A large amount of literature is available regarding FBMC based spectrum sens-
ing for CRNs [116, 117, 118]. Such schemes have shown a superior performance
with respect to detecting a PU signal embedded in noise and interference, de-
spite lacking a prior knowledge of the PU signal [1].

4. Different from the widely known OFDM, a properly designed DFT-FB with
an orthogonal pulse which does not require additional guard bands [119]. Yet
it provides an efficient method of transmitting multiple streams of data within
the available bandwidth.

5. FBMC schemes offer higher spectrum flexibility, efficiency, and more robust
synchronization than the conventional OFDM scheme [120]. In addition,
FBMC is capable of providing a perfect TF localization of a signal’s energy,
and accessing a fragment of spectrum during spectrum access and spectrum
sharing in a simple and straightforward procedure, hence it facilitates the
implementation of the 5G telecommunication standards [8]. Moreover, upon
considering a DFT-FB based SU transceiver structure, spectrum sensing, spec-
trum occupancy prediction and spectrum access all share the same hardware
structure for a CRN [25, 119].

On the other hand, the choice of having a critically sampled TF grid has been met to
provide two advantages: it offers an orthogonal Gabor pulse g [n], and it satisfies the
perfect reconstruction property (PRP) [25]. Hence, reconstructing the time-domain
signal based on its TF coefficients is possible [24] as

C [n] =
∑

�,k∈Λ
C�,kg�,k [n] .

4.2. Transceiver Structure

Figure 4.2 shows a SU’s transceiver [119] as a natural choice for any DFT-FB based
SU transceiver for CRNs. The SU receiver is equipped with the AFB, whereas
the transmitter is equipped with the SFB. The switch shown provides the SU with
the ability to choose between two actions upon required: position A enables the
SU to perform spectrum sensing and/or spectrum occupancy prediction. On the
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other hand, position B provides spectrum access whenever an appropriate TF slot
is available for SU transmission. Hence, the hardware complexity is reduced by
implementing multiple CR functionalities in one fundamental design.
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Figure 4.2.: SU transceiver being designed as a critically sampled DFT-FB.

At the receiver side, the prototype of the K filters given by G∗
k (z−1) represents the

paraconjugate of Gk (z), where Gk (z) = G
(
zW k

)
, W = e−j 2π

K and G (z) is given by

G (z) =
Lg−1∑
n=0

g [n] z−n,

for k = 0, . . . , K − 1 [2]. The signal at the output of the K filters are subsequently
downsampled by a factor of K. Various studies have been carried out to optimize
g [n] in order to obtain optimal TF localization properties to ensure minimum signal
leakage outside the TF grid [25, 121]. In the scope of this work, g [n] is assumed to
be an optimal pulse without any further optimization details.

For spectrum occupancy prediction purposes, the switch in Figure 4.2 must be at
Position A, hence the received signal Y [n] can be represented as

HQ : Y [n] = (1 − Q) S [n] + U [n] + W [n] , (4.2)

with the mutually independent processes S [n], U [n] and W [n] rep-
resenting the PU signal sensed by the SU receiver, the CCI and
additive white Gaussian noise (AWGN) signals, respectively. Furthermore, Q

is a random process which represents the system state or hypothesis with respect
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to channel availability to the SU, such that Q ∈ {0, 1}. An available channel for
the SU to utilize is indicated by Q = 1, whereas an unavailable channel is indicated
by Q = 0.

Upon projecting the received signal Y [n] into the AFB, it is decomposed into its
corresponding TF coefficients as

Y�,k = 〈Y [n] , g∗
�,k [n]〉 =

∑
n∈Z

Y [n] g∗
�,k [n] , (4.3)

with (�, k) ∈ Λ. As explained earlier, the TF coefficients Y�,k can be employed
for spectrum sensing purposes to detect the presence of the PU [1], as well as for
spectrum occupancy prediction. The random quantity Q in (4.2) is also mapped
into its equivalent TF random process, namely Q�,k with Q�,k ∈ {0, 1}. It represents
the occupancy state of the corresponding TF slot. Similarly, Q�,k = 1 indicates an
available TF slot for the SU to access, whereas Q�,k = 0 indicates its unavailability
due to the presence of a PU signal.

As the CRN allows its users; i.e., SUs, to learn and adapt to the wireless environment,
suitable sequences consisting of a sufficient number of symbols of Y�,k are observed
during the pilot phase and learning phase, as briefly introduced in Section 1.5. Fur-
ther explanations are presented in the following chapters.

4.3. Interference Modeling

This section deals with modeling the CCI signal observed at the SU receiver dis-
cussed in [1]. Characterizing the interference helps to understand the surrounding
environment and to evaluate the performance of the proposed spectrum occupancy
prediction schemes.

The main purpose of the work conducted in [1] is to perform a TF spectrum sensing
scheme based on the generalized likelihood ratio test (GLRT) to detect the presence
of a PU signal at the output of the AFB. However, as modeling the CCI signal is
required at this point, the observed signal Y�,k under hypothesis H1, i.e., Q�,k = 1, is
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investigated in this section. Note that the hypothesis of PU absence in [1] has been
considered to be H0, different to this work.
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Figure 4.3.: SU receiver structure as a critically sampled AFB.

Based on the structure of the SU receiver shown in (4.2), the time-domain complex
baseband process Y [n], which represents the received signal under H1, is given by

H1 : Y [n] = U [n] + W [n] . (4.4)

At the output of the AFB, the hypothesis test presented in (4.4) can be expressed
under H1 as

H1 : Y�,k = U�,k + W�,k,

where the TF coefficients Y�,k at the output of the AFB is obtained based on (4.3).
The mutually independent processes U�,k and W�,k represent the TF coefficients of
U [n] and W [n], respectively.

Since the CCI shows heavy-tailed and impulsive characteristics, as explained in
Chapter 3, the non-Gaussian signal U [n] in a CSMA/CA network follows statisti-
cally a complex symmetric α-stable distribution [95, 82], which belongs to the family
of stable processes. Both Gaussian and Cauchy are also examples of stable processes
[82]. In signal processing, symmetric α-stable distributions have recently gained sig-
nificant attention, as number of studies have proven that they accurately match and
fit real measurements [85, 122, 82].

Given the PDF pU�,k
(u) = pU�,k

(u; αint) of the complex random variable U = Ur + jUj

with its realization u = ur + juj, the characteristic function ϕU (ω) of the symmetric
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α-stable random process U is given by [123]

ϕU (ω) = exp
(

−
∫

Au
|ωrur + ωiuj|αint dΥUr,Uj(ur, uj)

)
, (4.5)

with ω = ωr + jωi, and ΥUr,Uj is the symmetric spectral measure of the random
variable U on a unit sphere Au [1, 123]. Moreover, the characteristic exponent αint

in (4.5), where αint ∈ (0, 2] describes the impulsiveness of the underlying stable
process; small values of αint mean more impulsive characteristics, hence heavier
tailed characteristics [88].

The PDF of any random variable can be calculated by applying the Fourier transform
on its characteristic function, yet evaluating the integral in (4.5) does not lead to
a solution [82]. Therefore, a fixed expression for pU�,k

(u; αint) does not actually
exist, except for the two special cases with αint = 2 and 1, representing Gaussian
and Cauchy distributions, respectively [88]. Nevertheless, to overcome this obstacle,
different approaches can be followed to approximate the required PDF based on a
set of observations, such as [82, 124, 88]:

• power series expansion,

• polynomial approximation,

• approximation using finite mixtures; such as Gaussian or Cauchy processes,

• a rational-based partial fraction, or

• power based approximation.

Furthermore, mixture models are examples of BNs as shown in Figure 2.1. They are
suitable to model a set of measurements which belong to multiple different subsets,
where each subset fits into its appropriate model [52, 55]. The most widely known
example of a mixture model is the GMM, which has been commonly used to model
non-Gaussian measurements due to its simplicity in the form of a parametric model
consisting of the sum of a finite number of weighted Gaussians [82]. Thus, it has
been also utilized in [1] to approximate the CCI signal.

Hence, the conditional PDF pY�,k
(y| H1) is approximated by a complex-valued (bi-

variate) GMM where y = yr + jyi is a realization of Y�,k, which can be expressed as
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pY�,k
(y| H1) =

R∑
r=1

wr CN (y ; μr, Σr) , (4.6)

consisting of total of R weighted Gaussian components, with R ∈ N. The weight of
the rth Gaussian component, wr satisfies the conditions

R∑
r=1

wr = 1 and 0 < wr < 1, (4.7)

for all r = {1, . . . , R}. Furthermore, μr and Σr are the mean vector and covariance
matrix of the rth component, respectively.

Wireless Environment for Interference Modeling
For simulation purposes, a CSMA/CA wireless network occupying a finite area with
a node density of ξM = 5 · 10−2 nodes/m2 has been investigated, where RM = 10 m.
The nodes are uniformly scattered around the receiver under consideration in an area
of 100 m2. The communication between the nodes is considered over 52 subbands
and follows a binary phase-shift keying (BPSK) modulation through a Rayleigh flat
fading environment. Based on Monte Carlo simulation, the nodes spatial distribu-
tion follows a Matérn hard-core process. The obtained CCI signal results from the
superposition of signals from multiple nodes simultaneously transmitting over the
same subband. Further simulation considerations are found in [1]. Under hypothesis
H1, i.e., Y [n] = U [n]+W [n], the sequence of i.i.d. symbols denoted by y0, . . . , yLy−1

of length Ly, with Ly ∈ N, is employed to estimate the GMM order R as well as
the parameters wr, μr, and Σr for r = {1, . . . , R}. For approximation purposes, the
expectation maximization (EM) algorithm along with k-means clustering algorithm
[125, 1] are employed to find the best-fit complex (bi-variate) GMM, which best
describes the observed sequence.

A heuristic approach based on [126] is employed to estimate the minimum required
number of Gaussian components to best approximate the observed sequence, i.e,
the model order. For this purpose, the estimated model order R̂ has been chosen
such that the increase in the corresponding likelihood function pY�,k

(y | H1) given
the model order R with respect to the one of order R − 1 is below a convergence

41



4. System Description

threshold ε. In other words, the minimal model order can be obtained as

R = min

⎧⎪⎨
⎪⎩R̂ ∈ N :

∣∣∣∣∣∣∣
pY�,k

(y)
∣∣∣
R=R̂

− pY�,k
(y)

∣∣∣
R=R̂−1

pY�,k
(y)

∣∣∣
R=R̂−1

∣∣∣∣∣∣∣ ≤ ε

⎫⎪⎬
⎪⎭ . (4.8)

Upon determining R̂, the EM algorithm is employed starting with ŵ(0)
r , μ̂(0)

r and Σ̂(0)
r

being the initial values of wr, μr, and Σr, respectively. A certain number of iterations
takes place until the relative increase in the corresponding likelihood function [1]
between two successive iterations is below the threshold ε. Further explanations
can be found in Appendix B. Figure 4.4 represents the likelihood function versus an
estimate of R, whereas Figure 4.5 represents the relative increase in the likelihood
function between two successive model orders.
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Figure 4.4.: pY�,k
(y) |R=R̂ versus R̂ [1].

Based on the simulation carried out for Ly = 104 [1], the minimal number of Gaus-
sian components has been chosen based on (4.8) to be R̂ = 8, with ε = 10−4. Note
that a high number of Gaussian components means more complexity without a
significant improvement.

Furthermore, the model and its corresponding approximation for R̂ = 8 are shown in
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Figure 4.5.: The relative increase in the likelihood function between two successive model orders.

Figure 4.6 and Figure 4.7. The relative frequency of the observed data y = yr +jyi at
the output of the AFB under H1 is represented in Figure 4.6 for the described Matérn
hard-core interference simulation. Figure 4.7 represents the approximated distribu-
tion pY�,k

(y| H1) Δarea which coincides with the histogram shown in Figure 4.6, based
on the conducted GMM estimation. Finally, Δarea indicates the area of the his-
togram bin given by Δarea = Δarea,r Δarea,i, where Δarea,r = Δarea,i = 0.2 [1].
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Figure 4.6.: Normalized histogram of observed data y = [yr, yi] [1].
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5
Chapter 5.

Prediction Schemes for a

System of Independent

Subbands

This chapter proposes TF prediction scheme for a system of K subbands, where
the contiguous subbands are considered mutually independently occupied by the
PU signal. The SU receiver structure presented in Figure 4.3 has been taken into
consideration, similar to spectrum sensing in [1], such that any interdependencies
between neighboring subbands are disregarded at this point. In order to be able to
explore the occupancy information at TF slot (�, k), the properly designed DFT-FB
discussed in Chapter 4 has been considered in this chapter to obtain the TF char-
acteristic of the time-domain received signal. The previously introduced discrete
random process Q�,k ∈ {0, 1} is used to represent the occupancy information of the
TF slot (�, k) based on its availability to the SU. The case with Q�,k = 1 represents
the availability of the (�, k) slot for the SU to access due to the absence of PUs,
whereas Q�,k = 0 indicates its unavailability.

Given those considerations, this chapter discusses the following two TF prediction
schemes:

1. The conventional DHMM based scheme, which has been widely implemented in
CRNs [42, 127, 43], is first discussed in Section 5.2. Unlike the available DHMM
based approaches in literature, the SU utilizes the critically sampled DFT-FB
Chapter 4 without the need for conventional subband filtering. Nevertheless,
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5. Prediction Schemes for a System of Independent Subbands

a proper discretization process is still required to map the continuous-valued
signal Y�,k into its discrete version which fits into the DHMM scheme, as to be
discussed.

2. The alternative novel TF based CHMM prediction scheme is proposed in
Section 5.3. This scheme employs Y�,k directly to learn the available environ-
ment and predict the future spectrum occupancy. Hence, both subband filter-
ing and discretization post-processing methods are eliminated in this scheme.

In this work, the PU signal transmission is performed in frames comprising of a
overall pilot sequence of length LP, where LP ∈ N, and PU spectrum access. This
ensures that the SU is able to keep track of the PU transmission and learn its pattern.
From the SU’s point of view and irrespective of the subband’s independencies, the
prediction steps consist of three consecutive phases over time: a pilot phase as part
of spectrum sensing, learning phase, and spectrum occupancy prediction phase.

During the pilot phase, the SU establishes a conditional model describing the re-
ceived signal based on the PU transmission. In other words, the signal at the
output of the AFB is modeled in the form of PDFs conditioned on the vector of
subbands state, as can be found in Section 6.2. The conditional PDFs are approxi-
mated by GMMs in view of (4.6). However, this general case can be reduced into
two hypotheses (occupancy states) whenever the interdependencies between the sub-
bands are neglected. Hence, the parameters of the conditional GMMs are estimated
under the two hypotheses in Q ∈ {0, 1} based on a suitable pilot sequence of a
certain length. For this matter, we assume a full cooperation from the PU side to
transmit the required and sufficient pilot sequences. The successive learning phase
allows the prediction scheme to learn and update its underlying parameters based on
the current PU transmission upon observing a so-called learning sequence of length
LL, where LL ∈ N. Finally, estimating the spectrum occupancy states at LO, where
LO ∈ N future time slots is carried out during the occupancy prediction phase based
on the estimated parameters in the previous two phases. Figure 5.1 illustrates the
prediction steps via the PU and SU signals.

As any interdependencies between neighboring subbands are disregarded in this
chapter, which could result from the wireless protocol at hand [2], the K subbands
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Figure 5.1.: PU and SU signals during the prediction steps.

are modeled independently. Hence, the prediction steps in the form of the three
previously described phases are performed for each subband k ∈ Δ separately.

The received signal Y�,k at the output of the AFB contains the following TF com-
ponents: S�,k, W�,k, and U�,k being the PU, AWGN thermal noise, and CCI signals,
respectively. For a given subband k′, the previously mentioned processes are ex-
pressed as Q�,k′ = Q�, S�,k′ = S�, W�,k′ = W�, and U�,k′ = U�, where the dependency
on the subband frequency is dropped. Thus, the processes can be simply represented
as Q�, Y�, S�, W�, and U�. Both S� and W� are modeled as circularly symmetric zero-
mean complex white Gaussian processes with average powers per subband νS and
νW , respectively. Moreover, the CCI signal U�, with an average power νU per sub-
band, is generated based on the Monte Carlo simulation described in Section 4.3.

In this system of subbands, the state of a certain subband can be expressed based
on Y� in analogy to (4.2) as

HQ�
: Y� = (1 − Q�) S� + W� + U�, (5.1)

with the mutually independent processes S�, W� and U�. The signal Y� is modeled as a
temporally stationary process, where its temporal memory is exclusively introduced
in Q� ∈ {0, 1}. Assuming a simple spectrum access scheme by the PUs, Q� is
considered to be a wide-sense stationary (WSS) in �. As Q� is actually unknown
or hidden to the SU receiver, it is modeled as a first-order hidden Markov process
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5. Prediction Schemes for a System of Independent Subbands

based on the Markov assumption or Markov property [128], such that

Pr {Q� = q�| Q�−1 = q�−1, Q�−2 = q�−2, . . .}
= Pr {Q� = q�| Q�−1 = q�−1} , (5.2)

where q� ∈ {0, 1} is a realization of Q�. In other words, the current occupancy
state of a certain subband depends on its previous state and irrespective of its own
occupancy history as well as the state occupancy of its neighboring subbands. Since
the phase �Y� of the observed signals at the AFB outputs has no information about
the availability of the PUs signal, the outputs Z� of an energy detector (ED) per
subband are considered onwards, where Z� = |Y�|2. Hence, the complexity of the
SU receiver, presented in Figure 5.2, is limited [2].

... ... ... ... ... ...

G∗
0 (z−1)

G∗
1 (z−1)

G∗
K−1 (z−1) K

K

K
Y�,0

Y�,1

Y�,K−1

|.|2

|.|2

|.|2
Z�,0

Z�,1

Z�,K−1

Y [n]

Figure 5.2.: The structure of a SU receiver followed by EDs per subband.

5.1. Pilot Phase

During this initial phase, a sequence of length L̃P ∈ N under each hypothesis is con-
sidered in order to characterize Z� in the form of conditional PDFs under Q ∈ {0, 1},
such that the overall considered pilot sequence LP = 2L̃P. Notice that the statis-
tics under H1 have already been estimated in Section 4.3, and the statistics under
H0 is only required at this stage. The conditional PDFs, which are expressed by
pZ�

(z| Q� = i) = pZ(z| Q = i) due to the stationarity assumption with i ∈ {0, 1},
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are approximated by GMM as

pZ(z| Q = i) =
R∑

r=1
wr,i N (z; μr,i, σ2

r,i), (5.3)

with R number of Gaussian components [2]. The GMM parameters: wr,i, μr,i and
σ2

r,i are the Gaussian PDF’s weights, expected values and variances, respectively
under the state i. The weights wr,i satisfy the conditions in (4.7). As presented in
[2], those components are collected in the (R × 2)-dimensional matrices

W = (wr,i) , M = (μr,i) , and Σ =
(
σ2

r,i

)
,

respectively. The EM algorithm along with k-means clustering [2, 125] are employed
to estimate W, M, Σ and R, as shown in Section 4.3 [2]. Hence, a best-fit GMM
under each hypothesis is obtained. It worth reminding at this point, that the pilot
phase is common for both DHMM and CHMM based prediction schemes, which are
described in the following sections.

5.2. Discrete Hidden Markov Model Based Prediction

Scheme

Given the nature of the observed (received) signal Z� in (5.3) under each state in
Q, a NP test [129] is utilized to map this continuous-valued signal into a discrete-
valued observation ZD,�. This procedure is actually needed to convert the continuous
received signal Z� into a discrete one to fit in the DHMM scheme. The NP test is
formulated based on a maximum false-alarm probability PFA as [2]

Z�

ZD,�=0

�
ZD,�=1

τNP, (5.4)

where τNP= τNP (PFA) is a numerically calculated threshold based on the PDFs in
(5.3). Consistent with (5.1), H1 implies the availability of the considered TF slot to
the SU to access as ZD,� does not contain the PU component S�. Thus, ZD,� = 1 is
determined by Z� < τNP in (5.4), otherwise ZD,� = 0 [2]. In other words, ZD,� ∈ {0, 1}
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5. Prediction Schemes for a System of Independent Subbands

can be considered as an initial memoryless estimate of Q�, which however is to be
improved via the DHMM based scheme given the memory introduced in (5.2).

In order to properly present the TF based DHMM spectrum occupancy predic-
tion scheme, its underlying parameters are first introduced. Afterwards, both the
scheme’s learning and prediction phases are subsequently explained. Within the
scenario in (5.1), the two hidden states per subband are indicated by Q� ∈ {0, 1}.
Likewise, there are two possible discrete-valued observations or alphabets indicated
in ZD,� ∈ {0, 1}, and they are conditioned on each state in Q�. For time slots
� = {0, . . . , LL − 1}, with LL, a first-order DHMM scheme, which is presented graph-
ically in Figure 5.3, is characterized by the following parameters or probabilities
[2, 128]:

Q1 Q2 QLL−1Q0

ZD,0 ZD,1 ZD,2 ZD,LL−1. . .

. . .

Figure 5.3.: A first-order DHMM for an observed sequence of length LL [2].

• The transition probabilities aij (�) from state Q�−1 = i to state Q� = j, for
(i, j) ∈ {0, 1} × {0, 1}, are defined by

aij (�) = Pr {Q� = j| Q�−1 = i} . (5.5)

• The conditional emission probabilities, bizD (�), based on each state in Q�, are
defined as

bizD (�) = Pr {ZD,� = z�,D| Q� = i} , (5.6)

where z�,D is a realization of ZD,�, and (i, zD) ∈ {0, 1} × {0, 1}.

• The initial state probabilities for k ∈ Δ are defined as

κi,k = Pr {Q0,k = i} = κi, (5.7)

with i ∈ {0, 1}, and κi satisfy the condition κ0 + κ1 = 1 [128].
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Due to the stationarity assumption, (5.5) and (5.6) are subsequently expressed sim-
ply by aij and bizD , as

aij (�) = aij = Pr {Q = j| Q = i} ,

and

bizD (�) = bizD = Pr {ZD = zD| Q = i} .

All possible transition probabilities are assembled in a (2 × 2) − dimensional (one-
step) transition matrix A, where A = (aij) and ai0 + ai1 = 1 [130]. Similarly, the
(2 × 2) −dimensional emission matrix B which contains all probabilities bizD , such
that B = (bizD) and bi0 + bi1 = 1 [130].

At this point, it is worth mentioning that the quantities in A are essential to the
presented schemes, whether DHMM or CHMM based prediction approaches. They
reflect the PU traffic pattern, as they model the subband’s sequential occupancy
information in the form of probabilities for all i, j ∈ Q. On the other hand, B is
considered as the probability of correct detection, missed detection and false-alarm
in a DHMM based scheme [42].

Furthermore, Figure 5.4 represents aij and bizD for the presented DHMM prediction
scheme and the considered CRN scenario. Clearly, one can introduce ΓD as a set

a00a11

Q = 1 Q = 0

a01

a10

ZD = 1 ZD = 0

b00b11

b10b01

Figure 5.4.: Transition and emission probabilities in a DHMM scheme [2].

which contains the previously explained probabilities as

ΓD = (A, B) , (5.8)
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with each quantity taking a value in Ω, which is defined as

Ω = {x ∈ R| 0 ≤ x ≤ 1} , (5.9)

hence ΓD ∈ ΩD, with ΩD = Ω8. Based on Figure 5.3, the joint probability distribu-
tion for the observed sequence

ZD,0 = z0,D, . . . , ZD,LL−1 = zLL−1,D, (5.10)

along with the corresponding hidden states

Q0 = q0, . . . , QLL−1 = qLL−1, (5.11)

based on ΓD is given by [52]

Pr {z0,D, . . . , zLL−1,D, q0, . . . , qLL−1 ; ΓD} = κq0

LL−1∏
�=1

aij (�)
LL−1∏
�=0

bizD (�) . (5.12)

5.2.1. Learning Phase

During this phase, the underlying parameters of the DHMM based scheme in (5.8)
are estimated based on the previously introduced learning sequence. For this matter,
the sequence of length LL defined in (5.10) is considered as the learning sequence,
observed directly after the pilot sequence. In other words, a best-fit DHMM based
scheme must be estimated in order to best describe the observed PU traffic pattern.
Notice that at this point the sequence of states in (5.11) is hidden to the SU receiver,
as the spectrum occupancy information is indeed unknown to the SU [13].

Analogous to DBNs with regard to known structure and complete observed data,
the maximum-likelihood estimation (MLE) method is a suitable approach for this
task [131]. Hence, a maximum-likelihood (ML) estimate of ΓD, namely Γ̂D,ML, is
expressed by

Γ̂D,ML = arg max
ΓD∈ΩD

Pr {z0,D, . . . , zLL−1,D ; ΓD} , (5.13)

with Pr {z0,D, . . . , zLL−1,D ; ΓD} is the corresponding likelihood function obtained
from marginalizing (5.12) over the states Q0, . . . , QLL−1. As (5.13) can not be solved
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analytically [2, 52, 128], dynamic programing methods are required. Known as a
generalization of the EM algorithm and as an unsupervised learning method for
HMM schemes [52, 132], the forward-backward algorithm – also referred in literature
as the Baum-Welch algorithm [130]– is utilized as an iterative procedure based on
the ML criterion. Among different learning (training) methods discussed in [43, 45]
for this task, this algorithm provides better performance despite its complexity [45].
Via the forward-backward algorithm, the problem in (5.13) is broken down into the
following two quantities [128]:

1. The forward probability α�,D(i), defined as the joint probability of observing
the sequence ZD,0 = z0,D, . . . , ZD,� = z�,D until time slot � and having the state
Q� = i given the model described in ΓD. It is expressed by

α�,D(i) = Pr {z0,D, . . . , z�,D, Q� = i ; ΓD} . (5.14)

2. The backward probability β�,D(i), defined as the probability of observing the
sequence from � + 1 until its end, i.e., ZD,�+1 = z�+1,D, . . . , ZD,LL−1 = zLL−1,D,
conditioned on the current state Q� = i for the model ΓD. It is expressed by

β�,D(i) = Pr {z�+1,D, . . . , zLL−1,D |Q� = i; ΓD} . (5.15)

The basic idea behind the forward-backward algorithm is to break down the chain
in Figure 5.3 into two parts: the past and the future, conditioned on the current
state Q� = i [55] and for the model defined in ΓD. For this purpose we introduce
the probability γ�,D (i), defined by

γ�,D (i) � Pr {Q� = i| z0,D, . . . , zLL−1,D} , (5.16)

which can be formulated based on the Bayes rule as

γ�,D (i) =
Pr {z0,D, . . . , zLL−1,D| Q� = i} Pr {Q� = i}

Pr {z0,D, . . . , zLL−1,D} . (5.17)

Since the sequence z0,D, . . . , z�,D is conditionally independent from the sequence
z�+1,D, . . . , zLL−1,D given Q� and based on the so-called d-separation criterion, the
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expression

Pr {z0,D, . . . , zLL−1,D| Q� = i} =

Pr {z0,D, . . . , z�,D| Q� = i} Pr {z�+1,D, . . . , zLL−1,D| Q� = i} ,

is valid [52], and γ�,D (i) can be rewritten as

γ�,D (i) = Pr {z0,D, . . . , z�,D, Q� = i} Pr {z�+1,D, . . . , zLL−1,D| Q� = i}
Pr {z0,D, . . . , zLL−1,D} .

Considering the definitions of α�,D(i) and β�,D(i) in (5.14) and (5.15), respectively,
the following relation

γ�,D (i) ∝ α�,D(i) β�,D(i)

hence is valid. Please refer to Appendix A for further explanations regarding the
d-separation criterion.

The forward-backward algorithm, which is the main part of the learning phase, is
common for all prediction schemes provided in this work, however with appropriate
modifications to fit each prediction scheme. This algorithm is conducted based on
the following detailed steps [128, 52, 130]:

1. Starting from initial estimates Γ̂(0)
D , given by Γ̂(0)

D =
(
Â(0), B̂(0)

)
with Â(0) and

B̂(0) are the initial estimate of A(0) and B(0), respectively, the corresponding
estimates of αi,D(�) and βi,D(�), namely α̂�,D(i) and β̂�,D(i), respectively, are
calculated. The quantity α̂�,D(i) is calculated iteratively as

a) initialization
α̂0,D(i) = κi b̂

(0)
izD (0) ,

b) iteration over � = 1, . . . , LL − 2

α̂�,D(i) = b̂
(0)
izD (�)

∑
j

α̂�−1,D(j) â
(0)
ji , (5.18)

c) termination
Pr {z0,D, . . . , zLL−1,D} =

∑
i

α̂LL−1,D(i).
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On the other hand, β̂�,D(i) is calculated iteratively as

a) initialization
β̂LL−1,D(i) = 1,

b) iteration over � = LL − 2 . . . , 0

β̂�,D(i) =
∑

j

b̂
(0)
jzD (� + 1) â

(0)
ij β̂�+1,D(j). (5.19)

The quantities b̂
(0)
izD (�), b̂

(0)
jzD (�), â

(0)
ji and â

(0)
ij , are the initial estimates of

bizD (�) , bjzD (�) , aji (�) and aij (�), respectively.

Please refer to Appendix A for detailed explanation on deriving the iterative
expression for αi,D(�) and βi,D(�).

2. For estimation purposes, two intermediate quantities are introduced at this
point [128]: first, γ�,D (i) as defined in (5.16). Second, ζ�,D (i, j), defined as
the probability of having the states Q�−1 = i and Q� = j given the observed
learning sequence and the model in ΓD, namely

ζ�,D (i, j) � Pr {Q�−1 = i, Q� = j |z0,D, . . . , zLL−1,D; ΓD} . (5.20)

The right-hand side in (5.20) is rewritten via Bayes rule [52] as

Pr {z0,D, . . . , zLL−1,D| Q�−1 = i, Q� = j} Pr {Q�−1 = i, Q� = j}
Pr {z0,D, . . . , zLL−1,D; ΓD} . (5.21)

As Pr {Q�−1 = i, Q� = j} in (5.21) is expressed by

Pr {Q�−1 = i, Q� = j} = Pr {Q� = j| Q�−1 = i} Pr {Q�−1 = i} ,

and given the parent-child relationship represented in Figure 5.3, the following
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relation regarding Pr {z0,D, . . . , zLL−1,D| Q�−1 = i, Q� = j} in (5.21)

Pr {z0,D, . . . , zLL−1,D| Q�−1 = i, Q� = j} =

Pr {z0,D, . . . , z�−1,D| Q�−1 = i}
Pr {z�,D| Q� = j}
Pr {z�+1,D, . . . , zLL−1,D| Q� = j} ,

is true. Consequently, ζ�,D (i, j) can be calculated based on the previous rela-
tions and in terms of the DHMM scheme’s parameters in ΓD as

ζ�,D (i, j) =
α�,D(i)aijbjzD (� + 1) β�+1,D(i)

Pr {z0,D, . . . , zLL−1,D; ΓD} . (5.22)

Regarding the estimation problem, estimates of ζ�,D (i, j) and γ�,D (i), namely
ζ̂�,D (i, j) and γ̂�,D (i), respectively, can be calculated based on the initial model
as

ζ̂�,D (i, j) =
α̂�,D(i)â(0)

ij b̂
(0)
jzD (� + 1) β̂�+1,D(j)

Pr
{

z0,D, . . . , zLL−1,D; Γ̂D
} ,

and by marginalizing over j, γ̂�,D (i) is subsequently obtained as

γ̂�,D (i) =
∑
j∈Q

ζ̂�,D (i, j) .

3. Hence, a new update of the DHMM scheme’s parameters, namely Γ̂D, are
calculated as

â
(1)
ij =expected number of transitions from i to j

expected number of transitions from i

=

LL−1∑
�=0

ζ̂�,D (i, j)
LL−1∑
�=0

γ̂�,D (i)
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5.2. Discrete Hidden Markov Model Based Prediction Scheme

and

b̂
(1)
izD (�) =expected number of times in state i and observing zD

expected number of times in state i

=

LL−1∑
�=0

with ZD,�=zD

γ̂�,D (i)

LL−1∑
�=0

γ̂�,D (i)

4. Similar to the EM algorithm, the forward-backward algorithm takes place with
a total mit,D number of iterations, until the increase in the likelihood function
is below the threshold ε, according to

∣∣∣∣∣∣∣∣
Pr

{
z0,D,...,zLL−1,D ;Γ̂

(mit,D)
D

}
−Pr

{
z0,D,...,zLL−1,D ;Γ̂

(mit,D−1)
D

}
Pr

{
z0,D,...,zLL−1,D ;Γ̂

(mit,D−1)
D

}
∣∣∣∣∣∣∣∣ ≤ ε.

The resulting model Γ̂(mit,D)
D of the learning phase, namely Γ̂D,ML ≈ Γ̂(mit,D)

D , is to
be employed in the final prediction phase in order to estimate the future occupancy
for each subband at � ≥ LL.

Nevertheless, a proper scaling for both αi,D(�) and βi,D(�) must be introduced during
implementation as their values approach zero quickly with each iteration [52], irre-
spective of considering DHMM or CHMM schemes. Therefore, αi,D(�) and βi,D(�) are
normalized at each iterative step by ∑

i
αi,D(�), and ∑

i
βi,D(�), respectively, such that

the sum of each quantity at each iteration step equals 1 [133]. The scaled versions
of αi,D(�) and βi,D(�), denoted by α̃i,D(�) and β̃i,D(�), respectively, are subsequently
defined [52]

α̃i,D(�) =Pr { i| z0,D, . . . , z�,D} ,

and

β̃i,D(�) =
Pr {z0,D, . . . , z�,D| Q� = i}

Pr {z�+1,D, . . . , zLL−1,D| z0,D, . . . , z�,D} .
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5. Prediction Schemes for a System of Independent Subbands

This scaling procedure has been considered as an implementation issue, which does
not affect the concept of spectrum occupancy prediction algorithms. Hence, both the
forward and backward quantities in the discussed schemes in this work are continued
to be defined unnormalized to reduce notations complexity.

5.2.2. Occupancy Prediction Phase

To this end, the sequence of states in (5.11), which has generated the corresponding
observed learning sequence in (5.10), is actually hidden to the SU receiver. There-
fore, based on Γ̂(mit,D)

D as the outcome of the learning phase, the hidden states are
estimated using the Viterbi algorithm. Considered as an efficient decoding method
[2, 134], the Viterbi algorithm estimates the corresponding most likely state se-
quence [52, 128] starting from 0 until LL − 1, namely q̂0, . . . , q̂LL−1. Furthermore,
the decoding procedure is carried out to estimate q̂� for future time slots � ≥ LL

[13].

At each time slot 0, 1, . . . , � the Viterbi algorithm calculates the most likely path
until time slot �, such that only a single path survives [52]. For the state j, where
j ∈ {0, 1}, the path until Q� = j is calculated by defining a cumulative best score
δ�,D (j) which maximizes the joint probability of Q� and ZD,� starting from time slot
0 [13], as [128]

δ�,D (j) = max
q0,...,q�−1

Pr
{

z0,D, . . . , z�−1,D, z�,D, q0, . . . , q�−1, Q� = j ; Γ̂(mit,D)
C

}

= b̂
(mit,D)
jzD (�) max

i
δ�−1,D (i) â

(mit,D)
ij .

(5.23)

Hence, the estimate Q̂� is obtained based on the following decision

δ�,D (1)
Q̂�=1
�

Q̂�=0

1
2

.

Since (5.23) produces an optimal sequence of states, it can be noticed that the maxi-
mization problem does not take into account the individual probability of occurrence
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5.3. Continuous Hidden Markov Model Based Prediction Scheme

of Q�, as in
q̂� = arg max

i
γ̂�,D (Q� = i) . (5.24)

Thus, any invalid transitions represented by aij = 0 are still taken into consideration
in (5.23) unlike in (5.24) [128]. Furthermore, as the Viterbi algorithm utilizes a
best-fit model Γ̂(mit,D)

D being estimated during the learning phase, no backtracking
is required in the implemented prediction schemes. In other words, this final step
consists of Viterbi decoding, not to be mistaken with Viterbi learning in [128].

5.3. Continuous Hidden Markov Model Based

Prediction Scheme

It has been shown that significant performance degradation in speech recognition
occurs when utilizing discrete observations to implement the HMM scheme as a
speech recognizer in the form of a DHMM based approach. This performance degra-
dation is due to the vector quantization process of speech signals, which introduces
information loss [46]. Therefore, an alternative approach is presented in this work
by employing a first-order CHMM based scheme which utilizes the signal directly
at the output of the EDs and after the AFB, as in Figure 5.2, hence eliminating
the need of the threshold in (5.4). During the learning phase associated with the
CHMM based prediction scheme, the learning sequence

Z0 = z0, . . . , ZLL−1 = zLL−1, (5.25)

is considered and observed directly after the pilot phase as it fits into the CHMM
scheme without further processes. For this matter, B in ΓD is replaced by estimates
of the GMM parameters in (5.3). Therefore, only the parameters in A = (aij) are
defined in the set ΓC as

ΓC = (A) , (5.26)

which represents the alternative first-order CHMM based prediction model. During
the learning phase, the parameters in ΓC, namely the transition probabilities aij ,
are estimated, where ΓC ∈ ΩC, ΩC = Ω4, and Ω is defined in (5.9).
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5. Prediction Schemes for a System of Independent Subbands

Moreover, Figure 5.5 represents a modified version of Figure 5.4, which describes the
fundamental parameters for the CHMM based prediction scheme and the considered
scenario as Q� ∈ {0, 1}. Similar to the DHMM based prediction approach, a best-fit
model is to be estimated during the learning phase as to be utilized thereafter during
the prediction phase. Thus, the following sections explain the learning phase and
occupancy prediction phase for the CHMM based scheme.

a00a11

Q = 1 Q = 0

a01

a10

pZ(z| Q = 1) pZ(z| Q = 0)

Figure 5.5.: Transition probabilities for the CHMM.

5.3.1. Learning Phase

As declared earlier, during its learning phase the set of parameters characterizing
the CHMM scheme defined in ΓC are estimated given the learning sequence in (5.25).
The ML estimate of ΓC, denoted as Γ̂C,ML, is given by

Γ̂C,ML = arg max
ΓC∈ΩC

p (z0, . . . , zLL−1 ; ΓC)

where p (z0, . . . , zLL−1 ; ΓC) represents the corresponding likelihood function for the
given learning sequence and the model defined in ΓC. Similarly, the forward-
backward algorithm is utilized. Starting with the model’s initial knowledge Γ̂(0)

C ,
its estimate is iteratively calculated by utilizing the forward and backward quanti-
ties α�,C(i) and β�,C(i), respectively. For the CHMM based scheme and a given ΓC,
the quantities α�,C(i) and β�,C(i) are defined as [134, 135]

α�,C(i) =p (z0, . . . , z�, Q� = i ; ΓC) ,
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5.3. Continuous Hidden Markov Model Based Prediction Scheme

and

β�,C(i) =p (z�+1, . . . , zLL−1 |Q� = i; ΓC) ,

respectively. Similar to the DHMM based scheme, the learning phase in the form of
the forward-backward algorithm for the considered CHMM scheme can be outlined
in the following steps [46, 128]:

1. Given Γ̂(0)
C =

(
Â(0)

)
, the quantities α̂�,C(i) and β̂�,C(i) are correspondingly

obtained as initial estimates of α�,C(i) and β�,C(i), respectively. The quantity
α̂�,C(i) is iteratively obtained as [136]

a) initialization
α̂0,C(i) = κi pZ(z0| Q0 = i) ,

b) iteration over � = 1, . . . , LL − 2

α̂�,C(i) = pZ(z�| Q� = i)
∑

j

α̂�−1,C(j) â
(0)
ji ,

c) termination
p
(

z0, . . . , zLL−1 ; Γ̂(0)
C

)
=

∑
i

α̂LL−1,C(i).

Furthermore, β̂�,C(i) can be iteratively calculated as

a) initialization
β̂LL−1,C(i) = 1,

b) iteration over � = LL − 2 . . . , 0

β̂�,C(i) =
∑

j

pZ(z�| Q� = j) â
(0)
ij β̂�+1,C(j).

2. In analogy to the quantities ζ�,D (i, j) and γ�,D (i) in the DHMM based scheme,
estimates of ζ�,C (i, j) and γ�,C (i, r), namely ζ̂�,C (i, j) and γ̂�,C (i, r), respec-
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5. Prediction Schemes for a System of Independent Subbands

tively where r = {1, . . . , R}, are obtained based on Γ̂(0)
C as

ζ̂�,C (i, j) � p
(

i, j |z0, . . . , zLL−1; Γ̂(0)
C

)

=
α̂�,C(i)â(0)

ij pZ(z�+1| Q�+1 = j) β̂�+1,C(j)
p
(

z0, . . . , zLL−1 ; Γ̂C
) (5.27)

and
γ̂�,C (i, r) � p

(
i, r |z0 . . . zLL−1; Γ̂C

)

=

⎡
⎢⎣ α̂�,C(i)β̂�,C(i)∑

i
α̂�,C(i)β̂�,C(i)

⎤
⎥⎦
⎡
⎢⎢⎢⎣ wr,i N (z; μr,i, σ2

r,i)
R∑

h=1
wh,i N (z; μh,i, σ2

h,i)

⎤
⎥⎥⎥⎦ ,

where h = {1, . . . , R}.

3. A new update, namely Γ̂C, is subsequently obtained as

â
(1)
ij =

LL−1∑
�=0

ζ̂�,C (i, j)
LL−1∑
�=0

R∑
r=1

γ̂�,C (i, r)
.

4. Likewise, a total number of mit,C iterations are needed until the increase in
the likelihood function is below ε as∣∣∣∣∣∣∣∣

p

(
z0,D,...,zLL−1,D ;Γ̂

(mit,C)
C

)
−p

(
z0,D,...,zLL−1,D ;Γ̂

(mit,C−1)
C

)
p

(
z0,D,...,zLL−1,D ;Γ̂

(mit,C−1)
C

)
∣∣∣∣∣∣∣∣ ≤ ε,

where the resulting model is indicated by Γ̂(mit,C)
C . Hence Γ̂C,ML ≈ Γ̂(mit,C)

C .

5.3.2. Occupancy Prediction Phase

In a manner similar to the occupancy prediction phase in the DHMM based predic-
tion scheme, the Viterbi algorithm is employed to decode the hidden states for time
slots � = 0, . . . , LL − 1, namely q̂0, . . . , q̂LL−1. Afterwards, the procedure continues
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to estimate q̂� for future time slots where � ≥ LL [2]. Among the available state
sequences in the time-states trellis diagram, a single sequence q̂0, . . . , q̂� [128, 134]
is hence estimated. Analogous to (5.23), the cumulative best score, δ�,C (j), for the
path until the state Q� = j ∈ {0, 1} in the CHMM based scheme defined as

δ�,C (j) = max
q0,...,q�−1

p
(

z0, . . . , z�−1, z�, q0, . . . , q�−1, Q� = j ; Γ̂(mit,C)
C

)
= pZ(z�| Q� = j) max

i
δ�−1,C (i) â

(mit,C)
ij ,

for Γ̂(mit,C)
C being the best-fit model obtained during the learning phase. The esti-

mate Q̂� is subsequently obtained similar to the prediction decision followed in the
DHMM based prediction scheme, namely [2]

δ�,C (1)
Q̂�=1
�

Q̂�=0

1
2

.

5.4. Summary

This chapter has introduced the TF spectrum occupancy prediction approach based
on the conventional CHMM scheme as an alternative approach to the DHMM based
scheme. It applies to cases when adjacent subbands are mutually independently
occupied by the PU signal. The CHMM scheme is an appropriate approach due to
the nature of the received signal, where no extra post-processing is required. Hence,
the information within the received signal is fully explored for prediction purposes.
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6
Chapter 6.

Prediction Scheme for a

System of Dependent

Subbands

After presenting the TF based spectrum occupancy predictor in the form of the
first-order CHMM based scheme as an alternative approach to the conventional
DHMM scheme, this chapter proposes a more suitable yet complex scheme, which
takes the interdependencies between direct adjacent subbands into account. The
SU receiver structure in Figure 5.2 has also been considered in this chapter. At
this point, it is worth reminding that none of the available spectrum occupancy
prediction schemes have yet captured any interdependencies between neighboring
subbands in a suitable model, nor within the prediction decision. The available
prediction schemes in literature have so far neglected the independencies between
signals at neighboring subbands, thus each subband or channel has been modeled
and its occupancy has been estimated independently.

Despite its superior performance, the first-order CHMM based prediction scheme
presented in Chapter 5 is not sufficient to model and predict the spectrum occupancy
when interdependencies between contiguous subbands are taken into consideration.
Therefore, a proper coupling mechanism is introduced to the CHMM based scheme
in Section 5.3 to present a novel prediction approach in the form of a lag-one first-
order coupled CHMM based TF spectrum occupancy prediction scheme. Within this
novel approach, the occupancy information of any subband depends on its nearest
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6. Prediction Scheme for a System of Dependent Subbands

directly adjacent TF neighbors in a causal system of multiple subbands. Similar to
Chapter 5, the presented scheme also consists of the three successive phases presented
in Figure 5.1: an initial pilot phase, a learning phase, and an occupancy prediction
phase, as illustrated in Figure 5.1. These phases are similar in concept to those
discussed in Section 5.3. However, proper adjustments have been introduced to
match the considered coupling mechanism.

Whether modeling discrete or continuous observations, a coupled HMM scheme is
known to be a generalization of the single DHMM, or CHMM scheme, respectively
[136]. Coupled approaches have been utilized to model dynamic systems and ap-
plications with multiple interacting processes [57], either for discrete or continuous
observations. They have been employed in audio-visual speech recognition [136, 137],
modeling freeway traffic activity [138], as well as various classifications and detection
problems [139, 140].

As the previously introduced random process Q�,k ∈ {0, 1} describes the occupancy
state at the TF slot (�, k), the state vector Q� given by

Q� = [Q�,0, . . . , Q�,K−1]ᵀ ,

characterizes the corresponding occupancy state of the K contiguous subbands. Sim-
ilar to Chapter 5, Q�,k = 0 indicates the unavailability of subband k ∈ Δ at time slot
� for the SU to access due to an existing PU signal S�,k, whereas Q�,k = 1 indicates
its availability. For this matter, the coefficient vector Y�, defined by

Y� = [Y�,0, . . . , Y�,K−1]ᵀ ,

is utilized to obtain the occupancy information. The vector Y� contains the K TF
coefficients at time slot � of the signal Y [n] received by the SU. In other words, the
K components of the state vector Q� at time slot � indicate the availability of the
corresponding subbands for the SU’s utilization.

Moreover, the vector S� = [S�,0, . . . , S�,K−1]ᵀ, with mutually independent K com-
ponents in the �-domain, denotes the PU signal vector. The process S� has been
modeled in this work as a zero-mean circularly symmetric complex K-variate Gaus-
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sian random vector with a covariance matrix Ξ defined by

Ξ = E
{
S�S†

�

}
. (6.1)

Along with S�, the vector Y� contains two other TF vector components: the thermal
noise

W� = [W�,0, . . . , W�,K−1]ᵀ ,

and the CCI signal
U� = [U�,0, . . . , U�,K−1]ᵀ ,

both having mutually independent components in time and frequency domains. The
random vector W� is modeled as a zero-mean circularly symmetric complex K-
variate Gaussian random vector with the covariance matrix

E {W�Wᵀ
� } = νW IK .

The non-Gaussian CCI random vector U� has identical average power νU per sub-
band, and its components U�,k follows the Matérn hard-core spatial process discussed
in Section 4.3. The resulting process Y� is modeled as a temporally stationary dis-
crete random vector. Its temporal memory is therefore introduced exclusively by
the state vector Q�, where the latter contains 2K possible states or hypotheses cor-
respond to the PU availability in each of the K subbands. In analogy to (4.2), Y�

is represented under each possible hypotheses in HQ�
as

HQ�
: Y� = (IK − diag (Q�)) S� + W� + U�, (6.2)

with S�, W�, and U� are mutually independent. Similar to Chapter 5, the compo-
nents of Q�, namely Q�,k are considered to be WSS in the �-domain. To simplify
matters, the components of the vector S� are assumed to be a section of a WSS
process in k. Therefore, Ξ has a Toeplitz structure, where the components of its
main diagonal represent the average power per subband νS.
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6. Prediction Scheme for a System of Dependent Subbands

6.1. Subband Modeling

Similar to Chapter 5, as the occupancy information at each TF slot is unknown to
the SU receiver, the components of Q�, namely Q�,k, are modeled in the coupled
scheme as a first-order hidden Markov process [13, 2], such that Q�,k depends on its
nearest TF neighbors in a causal system. Therefore, the previously discussed Markov
assumption in Chapter 2 is relaxed [57, 136], allowing the adjacent subbands to be
included in the model. For this matter, the vector Ψ�,k is introduced to define the
parent subband state of Q�,k. The state dependencies in the coupled model is given
by

Pr {Q�,k = q�,k| Q�−1 = q�−1, Q�−2 = q�−2, . . .}
= Pr

{
Q�,k = q�,k| Ψ�,k = ψ�,k

}
, (6.3)

where q�−1 = [q�,0, . . . , q�,K−1]ᵀ is a realization of Q�−1. The TF parent subbands
state Ψ�,k is defined as

Ψ�,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[Q�−1,k, Q�−1,k+1]ᵀ , for k = 0
[Q�−1,k−1, Q�−1,k, Q�−1,k+1]ᵀ , for 1 ≤ k ≤ K − 2
[Q�−1,k−1, Q�−1,k]ᵀ , for k = K − 1,

with the corresponding realization vectors

ψ�,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[q�−1,k, q�−1,k+1]ᵀ , for k = 0
[q�−1,k−1, q�−1,k, q�−1,k+1]ᵀ , for 1 ≤ k ≤ K − 2
[q�−1,k−1, q�−1,k]ᵀ , for k = K − 1.

Similar to the DBNs introduced in Chapter 2, the relation between Q�,k and its
parent subband Ψ�,k for k = 1, . . . , K − 2 is represented graphically in Figure 6.1.
It can be deduced based on Figure 6.1 that the future occupancy information of
k = 1, . . . , K − 2 subbands depends on its current state as well as the current state
of its neighboring subbands.

Furthermore, a biased boundary condition has been introduced assuming that the
proposed system of k ∈ Δ subbands belongs to a subsystem of an infinite number
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Q�−1,k−1

Q�−1,k

Q�−1,k+1

Q�,k

Figure 6.1.: A graphical representation of the considered lag-one first-order coupling scheme.

of subbands, such that Q�,k′ = 0 for k′ /∈ Δ, as they are actually not available to the
SU. Hence, the definition of Ψ�,k is modified as

Ψ�,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0, Q�−1,k, Q�−1,k+1]ᵀ , for k = 0
[Q�−1,k−1, Q�−1,k, Q�−1,k+1]ᵀ , for 1 ≤ k ≤ K − 2
[Q�−1,k−1, Q�−1,k, 0]ᵀ , for k = K − 1.

Similar to the reasons stated in Chapter 5, the output signal Z� denoted by
Z� = [Z�,0, . . . , Z�,K−1]ᵀ of the K EDs which follow the AFB is considered onwards,
where Z�,k = |Y�,k|2. Thus, the signal Z� is employed in the following for spectrum
occupancy purposes. Furthermore, as the prediction process is carried out in the
previously explained three successive phases, let us first consider the initial pilot
phase in terms of complexity. During the pilot phase, modeling Z� based on the
availability of the PU in the set of K subbands is required to be obtained. Basically,
the model is presented in the form of PDFs conditioned on the 2K hypotheses in
Q� based on the ML mechanism. This, however, can be extremely complicated for
larger values of K. Therefore, to reduce the complexity, the block of L-component
vector Z�,k given by

Z�,k = [Z�,k, . . . , Z�,k+L−1]ᵀ (6.4)

is instead considered in the prediction process for k = 0, . . . , K − L along with the
corresponding state vector Q�,k given by

Q�,k = [Q�,k, . . . , Q�,k+L−1]ᵀ . (6.5)

Further details about the technique followed to predict the occupancy state of each
subband is discussed in Section 6.4. The value of the parameter L is important for
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6. Prediction Scheme for a System of Dependent Subbands

implementation purposes in order to obtain a simple yet reliable prediction scheme,
where L = {1, 2, . . . } and L < K. The case where L = 1 is equivalent to the scheme
presented in Chapter 5. Accordingly, the L-component vector of the PU signal S�,k

is by
S�,k = [S�,k, . . . , S�,k+L−1]ᵀ ,

with its covariance matrix ΞL given by

ΞL = νS

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ2 . . . ρL−1

ρ 1 ρ
. . . ...

... ... ... . . . ...
ρL−1 ρL−2 . . . . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (6.6)

which corresponds to a submatrix of (6.1) for matching subbands with a correlation
coefficient ρ.

The idea behind considering a block of L subbands for complexity reduction pur-
poses is similar to the concept of a resource block in the LTE standard [141]. For
example, the interdependencies between L = 5 contiguous subbands is represented
graphically in Figure 6.2. Irrespective of the block size L, the occupancy information
of a subband depends on its parent subbands which are within the defined block.

Q�−1,k

Q�−1,k+1

Q�−1,k+2

Q�−1,k+3

Q�−1,k+4

Q�,k

Q�,k+1

Q�,k+2

Q�,k+3

Q�,k+4

Figure 6.2.: A graphical representation of the considered lag-one first-order coupling scheme within
a block of L = 5 contiguous subbands.
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6.2. Pilot Phase

In order to establish the conditional PDFs of Z�,k given Q�,k within a certain block
of length L, L̃P instances of Z�,k are observed at past � < 0 time slots for each of
the N possible Q�,k state vectors within the L-block of subbands, where N = 2L. In
this work, the block of subbands has been considered to be L = {1, 2, 3, 4, 5}, and
the overall number of observed instances of Z�,k required during the pilot phase, i.e,
LP, in order to model the system of K subbands is

LP =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

NL̃PK/L, for L = 1, 4
NL̃P(K + 2)/L, for L = 2, 3
NL̃P(K + 1)/L, for L = 5,

with additional boundary subbands for the cases of L = 2, 3 and 5. The introduced
boundary subbands are included to ensure proper blocks modeling during imple-
mentation. Note that the case with L = 1 represents the system of independent
subbands explained in Chapter 5. Furthermore, the PDFs pZ�,k

(z�,k| Q�,k = p) are
assumed to be independent of k and approximated by L-variate GMM scheme as

pZ�,k
(z�,k| Q�,k = p) =

R∑
r=1

wrN (z�,k; μr,p, Σr,p), (6.7)

where p ∈ Q�,k, and the number of Gaussian components R is independent of the
states. The PDFs’ mean vector μr,p, the covariance matrix per state Σr,p, the
weights wr, and R depend neither on � nor k. The weights wr satisfy the conditions
in (4.7). The parameters in (6.7) are estimated via the EM algorithm and k-means
clustering in analogy to Section 6.2.

6.3. Learning Phase

In order to model the underlying traffic model, the transition probabilities must be
estimated. The previously defined transition probabilities are modified to suit the
scheme in Figure 6.1. Therefore, we define aq,ψ (�, k) as an extension or generaliza-
tion of aij in (5.5), with i, j ∈ Q�,k for the single scheme in Chapter 5, where the
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6. Prediction Scheme for a System of Dependent Subbands

contiguous subbands are mutually independently occupied by the PU signal. The
quantities aq,ψ (�, k) at the corresponding TF slot are given by

aq,ψ (�, k) = Pr {Q�,k = q| Ψ�,k = ψ} ,

which may be expressed due to stationarity as aq,ψ (k), given by

aq,ψ (�, k) = aq,ψ (k) = Pr {Qk = q| Ψk = ψ} , (6.8)

where aq,ψ (k) ∈ Ω, and for a common ψ the condition a0,ψ (k)+a1,ψ (k) = 1 is valid.

In analogy to a DBN, the probabilities aq,ψ (k) are arranged in a conditional proba-
bility table to define the conditional dependencies between a subband and its parent
subbands. Moreover, aq,ψ (k) is used to formulate the N × N transition matrix be-
tween the N possible states in the state vector Q�,k for a given L, as in single HMM
schemes. The transition probabilities apq (�) between any two state vectors q and p,
such that p = [q�−1,k, . . . , q�−1,k+L−1]ᵀ and q = [q�,k, . . . , q�,k+L−1]ᵀ, with p, q ∈ Q�,k,
are given by

apq (�) = apq =Pr {Qk = q| Qk = p}

=aq,ψR (k) aq,ψL

(
k̃
) k̃−1∏

c=k+1
aqc,ψc

(c) ,
(6.9)

where k̃ = k + L − 1. Furthermore, aq,ψR (k) and aq,ψL

(
k̃
)

are the transition prob-
abilities of subbands k and k̃ after marginalizing out the left most and the right
most parent subband, respectively for a certain values of L and κi. The quantities
aq,ψR (k) , aq,ψL

(
k̃
)

∈ Ω2 are defined as

aq,ψR (k) = Pr {Q�,k = q| ΨR = ψR} ,

and

aq,ψL

(
k̃
)

= Pr {Q�,k = q| ΨL = ψL} ,

where ψR = [qk, qk+1]ᵀ and ψL =
[
qk̃−1, qk̃

]ᵀ
are realizations of ΨR and ΨL, respec-
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6.3. Learning Phase

tively. So that

ΨR = [Qk, Qk+1]ᵀ ,

and

ΨL =
[
Qk̃−1, Qk̃

]ᵀ
.

The marginalization is performed using the equal priors κi [142]. For explanation
purposes, let A, B1, B2, and B3 be four arbitrary discrete random variables with a
known conditional probability Pr {A| B1, B2, B3}. The probability Pr {A| B1, B2} is
given by

Pr {A| B1, B2} = Pr {A, B1, B2}
Pr {B1, B2} ,

where Pr {A, B1, B2} can be evaluated from Pr {A| B1, B2, B3} as

Pr {A, B1, B2} =
∑
B3

Pr {A| B1, B2, B3} · Pr {B1, B2, B3} .

Concerning the presented scheme, the set of transition probabilities for the block of
L components defined in (6.4) and (6.5) are given by the set Γ, such that

Γ =
(
aq,ψR (k) , aq,ψL

(
k̃
)

, aq,ψ (c)
)

, (6.10)

where c = k + 1, . . . , k̃ − 1, Γ ∈ ΩCC, where ΩCC is defined by ΩCC = ΩL.

Despite being a direct example of a DBN, it is still recommended to consider the
forward-backward algorithm to estimate the transition parameters in (6.10) in order
to reduce the complexity of the learning phase [136, 138]. During the learning phase,
the learning sequence

Z0,k = z0,k, . . . , ZLL−1,k = zLL−1,k, (6.11)

is observed to estimate the so-called best-fit model which best describe the underly-
ing traffic model. In (6.11), the vector z�,k =

[
z�,k, . . . , z�,k̃

]ᵀ
is a realization of Z�,k.

In analogy to the learning phase for the single CHMM scheme in Section 5.3.1, the
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6. Prediction Scheme for a System of Dependent Subbands

ML estimate of Γ, namely Γ̂ML, reads

Γ̂ML = arg max
Γ∈ΩCC

p (z0,k, . . . , zLL−1,k ; Γ) , (6.12)

where the expression p (z0,k, . . . , zLL−1,k ; Γ) in (6.12) represents the corresponding
likelihood function for a given Γ, L and the learning sequence considered in (6.11).
The optimization problem in (6.12) is broken down via the forward-backward algo-
rithm into two parts: the forward and the backward quantities, α� (p) and β� (p),
respectively, which are defined in [136] as

α� (p) = p (z0,k, . . . , z�,k, Q�,k = p ; Γ) ,

and

β� (p) = p (z�+1,k, . . . , zLL−1,k |Q�,k = p; Γ) .

Similar to Subsection 5.3.1, iterative estimation procedure takes place by evaluating
the estimates of α� (p) and β� (p), referred as α̂� (p) and β̂� (p), respectively, which
are used consequently to update the estimates of Γ.

For a certain estimate Γ̂, α̂� (p) and β̂� (p), are evaluated as

α̂� (p) = p
(

z0,k, . . . , z�,k, Q�,k = p ; Γ̂C
)

= pZ�,k
(z�,k| Q�,k = p)

∑
q

âqp α̂�−1 (q) ,
(6.13)

and
β̂� (p) = p

(
z�+1,k, . . . , zLL−1,k |Q�,k = p; Γ̂C

)
=

∑
q

pZ�,k
(z�,k| Q�,k = q) âpq β̂�+1 (q) ,

(6.14)

similar to the CHMM based scheme. The basic idea behind the forward-backward
algorithm has been excessively discussed in Chapter 5. In this chapter, the update of
the parameters in Γ will be presented. Starting from an initial guess Γ̂(0), indicated
as

Γ̂(0) =
(
â

(0)
qk,ψR

(k) , â
(0)
qk̃,ψL

(
k̃
)

, â
(0)
q,ψ (c)

)
,
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6.4. Occupancy Prediction Phase

the estimates α̂� (p) and β̂� (p) are evaluated iteratively based on (6.13) and (6.14),
respectively. The quantities â

(0)
qk,ψR

(k), â
(0)
qk̃,ψL

(
k̃
)
, and â

(0)
q,ψ (c) represent the initial

estimates of aq,ψR (k) , aq,ψL

(
k̃
)
, and aq,ψ (c), respectively. Correspondingly, a new

estimate of Γ̂ is calculated. In analogy to Subsection 5.3.1, the new estimate of the
transition probabilities in Γ̂, indicating the transition from p =

[
q�−1,k, . . . , q�−1,k̃

]ᵀ
to q =

[
q�,k, . . . , q�,k̃

]ᵀ
, are obtained as [143]

â
(m+1)
q,ψq

(k) =

LL−1∑
�=0

∑
q

α̂
(m)
� (p) â(m)

pq pZ�,k
(z�+1,k| Q�+1,k = q) β̂

(m)
�+1 (q)

p
(

z0,k, . . . , zLL−1,k ; Γ̂(m)
) ,

where ψq defines the parent state within the block L, such that q ∈ q, ψq ∈ p, and
â(m)

pq is the estimated value of apq at the mth iteration, which is obtained based on
(6.9) for the model Γ̂(m).

A total of mit number of iterations are needed to update α̂� (p) and β̂� (p), and
subsequently Γ̂, until the increase in the corresponding likelihood function is below
the threshold ε [136], in analogy to (5.27) as discussed in Section 5.3.1, as

∣∣∣∣∣∣
p
(

z0,k, . . . , zLL−1,k ; Γ̂(mit)
)

− p
(

z0,k, . . . , zLL−1,k ; Γ̂(mit−1)
)

p
(

z0,k, . . . , zLL−1,k ; Γ̂(mit−1)
)

∣∣∣∣∣∣ ≤ ε.

Thus, Γ̂ML ≈ Γ̂(mit) .

6.4. Occupancy Prediction Phase

Finally, the resulting model Γ̂(mit) obtained during the learning phase is utilized to
estimate Q�,k at � = LL, LL + 1, . . . future time slots during the prediction phase.
While shifting the block – referred tp as a (sliding) window in this part – of L

contiguous subbands throughout the k-domain, the occupancy prediction phase is
performed such that within each shift a new adjacent subband at the window’s right
most is decoded at future time slots. At the end, the obtained prediction information
is to be utilized in a suitable spectrum access scheme for the SU transmission.
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6. Prediction Scheme for a System of Dependent Subbands

As clarified in Chapter 5, the Viterbi algorithm is an efficient method to estimate
the most likely sequence of states [2, 134]. For � = 0, 1, . . . , the corresponding
most likely sequence of states Q̂0,k = q̂0,k, . . . , Q̂�,k = q̂�,k is decoded for the L

contiguous subbands. The path until Q�,k = q is calculated based on characterizing
the cumulative best score δ� (q) according to

δ� (q) = max
q0,k,...,q�−1,k

p
(

z0,k, . . . , z�,k, q0,k, . . . , q�−1,k, Q�,k = q ; Γ̂(mit)
C

)
= pZ�,k

(z�,k| Q�,k = q) max
p

δ�−1 (p) â(mit)
pq ,

given the best-fit model Γ̂(mit) obtained during the learning phase. Correspondingly,
the estimate Q̂�,k = q̂�,k is obtained based on the prediction decision

q̂ = arg max
q

δ� (q) ,

where the state vector q̂ = [q̂�,k−L+1, . . . , q̂�,k−1, q̂�,k] ∈ Q�,k, contains the estimated
states q̂�,k−L+1, . . . , q̂�,k−1 at a previous window shift. Hence, the occupancy predic-
tion phase is simplified.

6.5. Summary

In cases when the interdependencies between adjacent subbands are to be taken
into account, the presented CHMM based prediction scheme is modified in the form
of a lag-one coupled CHMM scheme. Hence, in this novel approach, the current
occupancy of a certain subband depends on its previous state as well as the previous
state of its directly adjacent subbands.
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7
Chapter 7.

Performance Analysis

This chapter presents the performance of the previously discussed TF based spec-
trum occupancy prediction schemes. To measure the reliability of those schemes, the
probability of the wrong prediction is considered in terms of different interference
based environments. Furthermore, the variables or parameters affecting the schemes’
reliability are also investigated. A simple indoor flat Rayleigh fading environment
has been considered with the presence of CCI arising from multiple transmitters
simultaneously utilizing the same subband [1]. The CCI signal is obtained based on
the Monte Carlo simulation discussed in Chapter 3. It is important to note that the
predicted occupancy information would be forwarded for utilization within a proper
spectrum access scheme, thus any wrong prediction can also be avoided. More-
over, the prediction results can be employed for power consumption optimization
purposes, as discussed in Chapter 2.

7.1. Evaluation of the Independent System

In this section, the performance of the TF prediction schemes introduced in
Chapter 5 is investigated for the case when the system of subbands are mutually
independently occupied by PU signal. In addition, this section discusses the im-
provements obtained by directly implementing the received signal into the CHMM
based scheme instead of the DHMM based scheme, as the discretization process is
no longer required. For simulation and performance evaluation purposes, two PU
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7. Performance Analysis

traffic scenarios: heavy and light traffic patterns, have been considered in implement-
ing both the DHMM and CHMM based schemes. The terms “heavy” and “light”
actually reflect the probability a subband is occupied by at least one PU based on
its previous occupancy state. Upon this definition, note that a subband is mostly
idle while experiencing a light traffic pattern, unlike the heavy one. As the matrix A
in the DHMM and CHMM prediction schemes contains the transition probabilities
between free and occupied states, the heavy and light traffic patterns are hence ex-
pressed based on the value the matrix A takes. The heavy traffic scenario is denoted
by A = Aheavy, where Aheavy is given by

Aheavy =

⎡
⎣0.7 0.3
0.9 0.1

⎤
⎦ . (7.1)

During the learning phase, its initial value, Â(0)
heavy, has been chosen for estimation

purposes as

Â(0)
heavy =

⎡
⎣0.8 0.2
0.7 0.3

⎤
⎦ .

On the other hand, the light traffic scenario is expressed by A = Alight, where Alight

is given by

Alight =

⎡
⎣1 1

1 1

⎤
⎦ − Aheavy =

⎡
⎣0.3 0.7

0.1 0.9

⎤
⎦ , (7.2)

whereas, the initial values in Â(0)
light are considered as

Â(0)
light =

⎡
⎣1 1
1 1

⎤
⎦ − Â(0)

heavy.

Based on (7.1) and (7.2), one can notice that the probability a subband being
occupied given that it was previously occupied in a heavy traffic scenario is 0.7,
whereas it is 0.3 in a light traffic scenario. The probabilities in B along with the
initial estimates in B̂(0) for the DHMM based prediction scheme are assumed during
simulation to be

B =

⎡
⎣0.95 0.05

0.05 0.95

⎤
⎦ and, B̂(0) =

⎡
⎣0.91 0.09

0.09 0.91

⎤
⎦ ,
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7.1. Evaluation of the Independent System

for both heavy and light traffic scenarios. Furthermore, simulation has been con-
ducted for κi = 0.5 and a system of K = 64 independent subbands. For more
clarifications, both the CHMM and DHMM prediction scheme generated based on
Alight and Aheavy, as well as B are considered as the real-life models, where the esti-
mated models during the learning phase are compared to for performance evaluation
purposes.

During the pilot phase, L̃P = 2000 instances of Z� under each hypothesis in
Q� ∈ {0, 1} are considered. The number of Gaussian components in (5.3) is R = 8.
During the learning phase, on the other hand, the length of the learning sequence
is LL = 1500. The performance for predicting the next LO = 5 · 105 future time
instant for � ≥ LL is characterized based on the probability of error Pe for all k ∈ Δ
subbands, given by

Pe = Pr
{
Q̂� �= Q�

}
, (7.3)

which is evaluated under different environment conditions characterized by SNR
value θ, as well as SIR value ϑ, where θ and ϑ are respectively defined by

θ =
νS

νW
, and ϑ =

νS

νU
. (7.4)

Table 7.1 summarizes the parameters for the DHMM as well as the CHMM based
prediction schemes and their considered values for both traffic scenarios. Figure 7.1

Table 7.1.: Parameters for the DHMM and CHMM based prediction schemes.
Parameter Parameter Value
K 64
PFA 0.05
L̃P 2000
LL 1500
LO 5 · 105

R 8
ε 10−4

κi 0.5

and Figure 7.2 present Pe as a function of θ and under various ϑ values for the heavy
and light traffic scenarios defined in (7.1) and (7.2), respectively.

79



7. Performance Analysis

-5 0 5 10 15 20 25

10-4

10-3

10-2

10-1

100

P
e

θ [dB]

DHMM, ϑ = -5 dB
DHMM, ϑ = 0 dB
DHMM, ϑ = 5 dB
DHMM, ϑ = 10 dB
DHMM, ϑ = 15 dB
CHMM, ϑ = -5 dB
CHMM, ϑ = 0 dB
CHMM, ϑ = 5 dB
CHMM, ϑ = 10 dB
CHMM, ϑ = 15 dB

Figure 7.1.: Pe versus θ for a heavy traffic scenario with A = Aheavy [2].
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Figure 7.2.: Pe versus θ for a light traffic scenario with A = Alight.
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Under both traffic scenarios, it can be noticed that Pe decreases as the effect of
interference reduces, i.e., by increasing ϑ for both implemented predictors. Simi-
larly, Pe improves by increasing θ up to θ = 25 dB. However, huge improvement
can be noticed by implementing the HMM prediction approach via employing the
received signal Z� observed directly at the output of AFB into the CHMM prediction
scheme. In Figure 7.1, the probability of error in DHMM based prediction scheme is
Pe ≈ 0.214 for an environment characterized by θ = 25 dB and ϑ = 15 dB. On the
other hand, the performance has indeed improved for similar environment conditions
by implementing the CHMM scheme as Pe ≈ 6 · 10−3.

Further remarks can be drawn from Figure 7.1 and Figure 7.2. Concerning the light
traffic scenario in Figure 7.2, it is noticed that for an environment characterized by
θ = 25 dB and ϑ = 15 dB the probability of error for the DHMM based prediction
scheme is Pe ≈ 0.216, whereas Pe ≈ 9 · 10−3 for the CHMM based scheme. In
comparison with Pe for the heavy traffic scenario under similar conditions, one can
deduce to this end that the implemented CHMM based prediction scheme is rather
robust to different PU traffic patterns, as it is able to adapt its parameters during
the learning phase given the traffic pattern under consideration in the form of the
learning sequence. Due to its superior performance, CHMM based prediction scheme
will be the subject of further analysis and investigation onwards.

As part of performance analysis, the length of pilot sequence L̃P under each hypoth-
esis has been changed to investigate its effect on the predictors under consideration.
L̃P has been varied within the range 2000 ≤ L̃P ≤ 50000. Simulation results have re-
mained essentially similar to the results presented in Figure 7.1 and Figure 7.2. The
robustness in its performance is due to the fact that the quantization step in (5.4) is
not needed in the CHMM scheme, hence, the information in the learning sequence
is fully exploited by the prediction scheme to estimate the future occupancy states
[2].

Moreover, the length of the observed learning sequence LL has been also considered
for performance evaluation. Thus, simulation has been performed over the range
10 ≤ LL ≤ 1500 for the CHMM based prediction scheme. Figure 7.3 shows Pe as
a function of LL for an environment characterized by θ = 25 dB and ϑ = 15 dB,
as the predictors are most reliable under those environment conditions. Unlike
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L̃P, the parameter LL is an important parameter which affects the performance,
as in any machine learning method. As expected, the performance improves, the
longer the learning sequence, i.e., Pe decreases by increasing the LL value. However,
this improvement is actually up to a certain value. Starting from LL = 1000, the
performance is unchanged and the probability of error is saturated as Pe ≈ 6 · 10−3.
Hence, one would rather employ LL = 1000 rather than 1500 to obtain the same
performance results with less computational effort [2].
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Figure 7.3.: Pe versus LL for the CHMM scheme with θ = 25 dB, ϑ = 15 dB, and A = Aheavy [2].

Finally, the number of iterations mit,C required to obtain the best-fit model during
the learning phase is also investigated. This parameter has a direct effect on the
prediction results, as the resulting model Γ̂(mit,C)

C after mit,C iterations is utilized
during the prediction phase. Therefore, simulation has been conducted in [2] to
evaluate mit,C as a function of LL and ϑ for θ = 25 dB as presented in Figure 7.4.
It is noticed that the required number of iterations, mit,C, decreases by increasing
the values of both LL and ϑ. As mit,C ≈ 500 iterations for LL = 10 and ϑ = −5 dB,
number of iterations drops down to mit,C = 4 for LL = 1500 and ϑ = 25 dB. Hence,
increasing LL for an environment with high interference can be a coping mechanism
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for interference mitigation within the CHMM based prediction scheme [2].

0

500

1000

1500 �5
0

5
10

15

10
0

10
1

10
2

10
3

m
it

,C

ϑ[dB]

LL

Figure 7.4.: mit,C versus LL and ϑ for the CHMM scheme, where θ = 25 dB, and A = Aheavy [2].

7.2. Evaluation of the Dependent System

A similar wireless environment has been considered in this section in order to evalu-
ate the performance of the prediction scheme for a set of dependent subbands. The
SU receiver structure with K = 64 critically sampled AFB has also been considered
to evaluate the performance of the proposed lag-one first-order coupled CHMM
based prediction scheme. Under each of the possible N = 2L hypotheses in the state
vector Q�,k, L̃P = 2000 instances of Z�,k has been considered for L = {1, 2, . . . , 5}
during the pilot phase in order to model the PDFs in (6.7). The resulting number of
Gaussian components in (6.7) is R = 8. In (6.6), the correlation coefficient between
directly adjacent subbands has been considered as ρ = 0.5.

Furthermore, the learning and occupancy prediction strategies have also been con-
sidered similar to the one in Section 7.1. In other words, the concept of heavy and
light traffic scenarios are also utilized for simulation and performance evaluation
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purposes. The heavy traffic scenario is characterized based on the transition proba-
bilities aq,ψ (k) = aq,ψ,heavy (k), where aq,ψ,heavy (k) are arranged in Table 7.2. Those
values are also used to build the transition matrix in (6.9) for each block L. The
probabilities aq,ψR (k) and aq,ψL

(
k̃
)

are also obtained based on Table 7.2.

Table 7.2.: The conditional probability table for a heavy traffic scenario.
Qk

0 1
[000]ᵀ 0.8 0.2
[001]ᵀ 0.7 0.3
[010]ᵀ 0.7 0.3
[011]ᵀ 0.8 0.2

Ψk [100]ᵀ 0.7 0.3
[101]ᵀ 0.65 0.35
[110]ᵀ 0.8 0.2
[111]ᵀ 0.9 0.1

Based on Table 7.2, within a heavy traffic scenario, the probability a subband k is
occupied whereby its parent subbands are also occupied is given by

a0,[000]ᵀ (k) = a0,[000]ᵀ,heavy (k)

= Pr {Qk = 0| Ψk = [000]ᵀ}
= 0.8

As a reasonable approach, the heavy traffic scenario has been designed such that
adjacent subbands are also occupied. Furthermore, during the learning phase, the
initial guess Γ̂(0) required for the forward-backward algorithm has been chosen such
that

â
(0)
0,ψ (k) =a0,ψ,heavy (k) − 0.15,

and

â
(0)
1,ψ (k) =a1,ψ,heavy (k) + 0.15.

In addition, the considered light traffic scenario aq,ψ (k) = aq,ψ,light (k) is also formu-
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lated based on Table 7.2, such that aq,ψ,light (k) is given by

aq,ψ (k) = aq,ψ,light (k) = 1 − aq,ψ,heavy (k) ,

with

â
(0)
0,ψ (k) =a0,ψ,light (k) + 0.15,

and

â
(0)
1,ψ (k) =a1,ψ,light (k) − 0.15.

For both scenarios, κi = 0.5 for all k ∈ Δ. The learning sequence of length LL = 1500
has been employed to predict the occupancy state for the next LO = 5 · 105 future
time slots with � ≥ LL, where ε = 10−4.

Simulation has been conducted for 1 ≤ L ≤ 5 in order to choose a suitable block
length to perform the previously discussed prediction phases to obtain a reliable and
simple spectrum occupancy prediction scheme. For this matter, the performance of
the proposed scheme in the form of Pe for all k ∈ Δ, as defined in (7.3), has been
evaluated as a function of L for an environment characterized by θ = 25 dB, ϑ = 15
dB, and the parameters of the heavy traffic pattern in Table 7.2. Simulation results
are shown in Figure 7.5.

In Figure 7.5, it is observed that the scheme’s performance improves by increasing the
number of L block components in Z�,k and Q�,k as Pe. For example, Pe ≈ 6.6·10−3 for
L = 1, which is actually comparable to the value obtained by the prediction scheme
when the K subbands are mutually independently occupied by the PU signal in
Section 7.1. Starting from L ≥ 3, however, the performance is improved by a small
rate. The probability of error decreases up to Pe ≈ 8.15 · 10−5 for L = 5. This is
rather a reasonable behavior, as the state of each subband depends only on the state
vector of its parent subbands within the block L, irrespective of and independent
from the rest of subbands. In the following, the performed simulation and the
corresponding results are shown for L = 5, where the complexity resulting from
schemes with L > 5 can be avoided as they provide no distinguishable improvement

85



7. Performance Analysis

1 2 3 4 5
10

�5

10
�4

10
�3

10
�2

L

P
e

Figure 7.5.: Pe versus L for θ = 25 dB, ϑ = 15 dB and aq,ψ (k) = aq,ψ,heavy (k).

in the performance. Table 7.3 summarizes the parameters utilized during simulation.

Table 7.3.: Parameters for the coupled CHMM based prediction scheme.
Parameter Parameter Value
K 64
L̃P 2000
LL 1500
L 5
LO 5 ·105

R 8
ε 10−4

κi 0.5

Furthermore, Pe has been investigated for environments characterized by different
θ and ϑ values. Figure 7.6 shows Pe as a function of θ for the heavy traffic scenario,
L = 5 and different ϑ values. It can be shown that the performance of the imple-
mented scheme improves by increasing θ values up to 25 dB, as well as for higher ϑ
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values. On the other hand, the performance of the light traffic scenario is presented
in Figure 7.7. Based on Figure 7.6 and Figure 7.7, it can be noticed that the perfor-
mance of the coupled prediction scheme for both patterns are quite similar. As an
example, concerning an environment characterized by θ = 25 dB and ϑ = 15 dB,
Pe ≈ 8.16 · 10−5 for the heavy traffic scenario, whereas Pe ≈ 8.48 · 10−5 for the light
one. Hence, it can be deduced that the presented coupled scheme is also robust
against the different PU traffic patterns, as in Section 7.1, as it can adapt its param-
eters during the learning phase based on the traffic pattern under consideration. In
view of the performance of the uncoupled CHMM based prediction scheme shown in
Figure 7.1 and Figure 7.2, one can deduce that the introduced coupling mechanism
in Figure 6.1 presented in the form of the coupled CHMM prediction scheme has
indeed improved the performance of the proposed prediction scheme.

Moreover, simulations have been conducted to investigate the parameters affecting
the scheme’s performance. For this matter, simulation is performed to evaluate Pe

as a function of LL. For an environment characterized by θ = 25 dB and ϑ = 15
dB, Figure 7.8 presents Pe as a function of LL for the coupled CHMM prediction
scheme as well as the uncoupled scheme in Figure 7.3. The corresponding heavy
traffic patterns have been considered for both schemes. As probability of error for
the uncoupled CHMM prediction scheme saturates at Pe ≈ 6 · 10−3 for LL ≥ 1000,
it actually saturates at a lower probability of error value and rather shorter learning
sequence for the coupled CHMM scheme, such that Pe ≈ 8.15 · 10−5 for LL ≥ 800.
Hence, one can indeed employ an even shorter learning sequence while implementing
the coupled CHMM prediction scheme to obtain better performance results than the
one obtained by the uncoupled CHMM prediction scheme.

Finally, simulation has been performed to obtain the required number of iterations
to obtain the best-fit model in analogy to Figure 7.4. Thus, Figure 7.9 presents mit as
a function of LL and ϑ for θ = 25 dB. Similar to Figure 7.4, the number of iterations
mit decreases by increasing LL and ϑ values. The required number of iterations for
LL = 10 at ϑ = −5 dB is mit ≈ 200, which is even smaller than the number of
iterations required for the CHMM based prediction scheme under similar conditions.
However, by increasing the ϑ and LL values, mit drops down to 4 iterations. Apart
from performance improvement, the value of mit hence decreases by introducing the
coupling mechanism in Figure 6.1.
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8
Chapter 8.

Conclusions and Outlook

8.1. Conclusions

The recently discussed CR technology presents a new dynamic and intelligent wire-
less platform which is able to learn and adapt its parameters to the surrounding
environment. Also, it presents promising solutions for the inefficient utilization
of the available radio resources; as the unlicensed ISM bands are crowded, over-
utilized and suffer from high CCI in comparison to the unexploited licensed bands
[3]. Furthermore, CR technology facilitates the emergence of the new 5G telecom-
munication standards, as it presents solutions for the current challenges resulting
from the continuously increasing demands on the available resources due to aris-
ing new wireless protocols and increasing number of devices and services. Such a
flexible radio platform with extremely high data rate and low latencies is capable
of overcoming the challenges facing the current 4G standards [120]. Along with
FBMC techniques, massive multiple input multiple output (MIMO) and millimeter
wave (mmWave), both CR and machine learning are indeed key enablers to the 5G
telecommunication standards [8, 120].

The term cognitive indicates awareness, consciousness, perception, adaptation, and
judgment [144]. However, this can only be achieved by allowing the radio to learn
its history to remember past lessons so that it can act in the future accordingly
[144]. Therefore, machine learning concepts along with signal processing– and other
fundamental theories– are needed to come up with such a CR based dynamic radio
platform [10].
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CR technology allows SUs to explore the licensed bands whenever a PU is un-
available, or to coexist with an already existing licensed subband in a suitable
interference-tolerance mechanism. Thus, the predefined QoS of the PU is main-
tained. Hence, CRN gets rid of the rigid spectrum assignment policies [14], using
[145]:

1. sensing and monitoring the spectrum

2. learning and characterizing the surroundings

3. optimizing a spectrum access decision based on the available constraints in
the form of spectrum availability, the followed CR strategy, power loading
mechanism, QoS requirements, etc., and

4. maintaining the adaptation process and spectrum sharing schemes.

Nevertheless, spectrum occupancy prediction schemes are essential for CRNs, in
order to maintain the PU’s QoS. The obtained future spectrum occupancy informa-
tion can be utilized in a proper spectrum access scheme. For this matter, HMM
based predictors have been introduced in this work, as they have shown reliability
in speech recognition, pattern classification and prediction [46, 128]. Furthermore,
for maximum resolution and utilization of the received signal, the SU employs a
properly designed critically sampled DFT-FB as part of its transceiver structure.
Hence, spectrum sensing, spectrum occupancy prediction, and spectrum access are
all implemented in one transceiver structure [119]. Irrespective of the considered CR
paradigm, a spectrum occupancy prediction scheme can be employed for modeling
and prediction purposes, as well as energy consumption consideration.

Unlike the available spectrum occupancy prediction schemes, this work has pre-
sented two novel TF spectrum occupancy prediction schemes based on the interde-
pendencies between neighboring subbands. For a system of independently occupied
subbands by the PU signal, a first-order CHMM based prediction scheme has been
introduced to replace the conventional and widely implemented DHMM based predic-
tion approach. Due to its superior performance in comparison with the conventional
scheme, the CHMM based approach has been expanded in the form of a lag-one first-
order coupled CHMM based prediction scheme, as it is able to model and predict
the spectrum occupancy for a system of dependently occupied subbands.
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As CCI plays an important role in wireless networks especially in the ISM band, the
Matérn hard-core spatial process has been considered to model the non-Gaussian
CCI signal spatially in a CSMA/CA network [1], as an accurate approach instead
of the PPP. Hence, the performance of the presented prediction schemes has been
considered based on different environments characterized by signal-to-noise ratio
as well as signal-to-interference ratio. Furthermore, their reliability has also been
considered with respect to the length of the learning sequence observed during the
learning phase, as an essential parameter in any machine learning based scheme.

On the other hand, in order to identify an appropriate environment or application for
the introduced TF based spectrum occupancy prediction schemes, a short overview
of the available approaches in literature for modeling the wireless traffic is provided.
Statistical traffic characterization and modeling have been investigated for both in-
door and outdoor wireless environments as well as for licensed and unlicensed spec-
trum bands, as it helps to analyze and evaluate the performance of networks [146].
Different studies have shown that wireless traffic has long-range dependence (LRD)
properties, as its auto-correlation function decays slowly over time and produces
heavy-tailed characteristics [147]. As a result, the wireless traffic displays a rather
long-term memory behavior [148]. Furthermore, wireless traffic shows a self-similar
nature due to its heavy-tailed behavior [146]. Self-similarity indicates that a segment
of wireless traffic over a certain time period would look or behave like a similar seg-
ment over a different time period [146]. Therefore, any traditional exponentially and
rapidly decaying short-range dependence (SRD) traffic models, such as Poisson and
Markov traffic models [147, 149], might rather not be the first choice as appropriate
traffic modeling approaches.

Nevertheless, different studies have still employed such SRD approaches, including
Markov based schemes, to model LRD traffic due to the following justifications and
reasons:

1. It has been clearly declared in [147] that dealing with LRD traffic is “far
from straightforward”, and aggregated traffic has indeed a tendency to behave
as SRD traffic. Therefore, different studies have indeed utilized Markov ap-
proaches to model and predict LRD and self-similar heavy-tailed (internet)
traffic [150, 151, 152, 153].
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2. Authors in [154] have argued that white spaces, i.e., unoccupied spectrum
bands, do exist between bursty WLAN traffic. Hence, a semi-Markov model
is introduced in [154] as a suitable channel state classification approach to
efficiently utilize those white spaces.

3. Suitable fitting mechanisms can be utilized to model the heavy-tailed char-
acteristics of LRD traffic. For example, traffic with long-tailed distributions
has been approximated via a mixture of a finite number of exponentials [155].
Furthermore, before applying Markov based modeling approaches, different
approximation fitting techniques have been employed [156, 157] .

4. In resource-limited networks, the wireless traffic is indeed considered as SRD
traffic rather than LRD one [158]. Hence, authors in [126] have investigated
second-order statistical characteristics of ISM indoor traffic. Based on real-
time measurements, it turns out that the traffic has SRD properties. Further-
more, both time and frequency auto-correlation functions have been modeled
as exponentially decaying functions.

Thus, the proposed first-order CHMM based schemes are indeed suitable for mod-
eling and predicting the spectrum occupancy for a resource-limited indoor wireless
network. A similar approach has been followed in [159] to model and analyze the per-
formance of communication channels in internet protocol (IP) networks. Based on
experimental measurements, the authors in [160] and [161] have modeled end-to-end
channel behavior, however in terms of packet loss and temporal delays. Furthermore,
HMM has been utilized in [150] for modeling internet traffic at packet level based
on real measurements.

On the other hand, choosing a rather simple scheme is a reasonable approach to
model any dynamic system. The HMM based scheme has been considered a first
choice for modeling different systems. It is considered to be analytically simple
and tractable scheme where joint dynamics can be easily captured [150]. Moreover,
it is rather a reasonable approach to expand the simple first-order HMM scheme
into a more complex coupled one. Hence, the interdependencies in TF domain has
been captured, instead of investigating the spectrum’s history in time in the form
of higher-order schemes. The complexity of the proposed schemes in terms of their
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memory is considered in a reasonable, objective, and adequate approach for TF
concerns.

8.2. Open Issues and Further Considerations

As CR technology provides solutions for the current resource-related issues, new
categories of threats have appeared in addition to the traditional ones, as discussed
in [3, 145, 162, 163]. Along with eavesdropping and spoofing, several challenges and
security concerns such as tampering, PU emulation and denial of service, which are
still open issues to this end [145] are introduced.

Any tampering and manipulation in spectrum sensing data create an important
security concern and a direct attack to the PUs transmission, as critical decisions re-
garding spectrum access and management depend on properly learning the available
environment based on the signal received by SUs [3]. Furthermore, the concept of a
PU emulation attack is mainly performed by an opponent which is able to replicate
the PU characteristics and signals [162]. Correspondingly, spectrum sensing results
contain false information leading to an improper learning phase as well as denial
of service. Hence, the SUs would not be able to access the spectrum for its own
transmission.

Apart from that, the SUs actually belong to different networks, such as ad-hoc, sen-
sor networks, etc., where each one of them has its own different parameters defining
spectrum quality and its QoS requirements. Hence, applying CR concepts for het-
erogeneous SUs is a challenging task [162]. On the other hand, a prediction scheme
which takes into account sharing the spectrum between multiple SUs has not yet
been investigated nor proposed to this end. Such a scheme which predicts the differ-
ent spectrum requirements in time, frequency and space for heterogeneous users is a
nontrivial task. Hence, the outcome of any spectrum occupancy prediction scheme
cannot be directly employed for spectrum sharing purposes, an extra mechanism
which takes the different requirements of heterogeneous networks into account must
be proposed and employed.
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On the other hand, due to its complexity, a CR based hardware implementation and
development has not yet reached a level as advanced as the theoretical work found in
the literature [163]. Furthermore, CR based architecture is extremely sensitive to in-
terference [163]. This alone presents big challenges facing hardware implementation
for both spectrum sensing and spectrum occupancy prediction. Moreover, maintain-
ing a properly synchronized system due to ON-OFF transmission in the form of an
interweave CRN is an exhausting task; since the re-synchronization mechanism has
to be performed each time a subband is labeled to be available.

In view of the presented spectrum occupancy prediction schemes, HMM based ap-
proaches have shown and proven their reliability for different recognition, classifica-
tions, and prediction applications. Due to their simple structure, DHMM schemes
have been widely implemented in CRNs based on discrete observed signals, as dis-
cussed earlier. However, for superior performance, CHMM based prediction schemes
have been proposed in this work. Whether utilizing overlay, underlay or interweave
strategies, CHMM based spectrum occupancy prediction schemes are valuable for
CRNs to avoid collision with PUs, maintain the QoS of PUs, and for network opti-
mization purposes in terms of power consumption during the cognitive tasks. As an
example, spectrum sensing can be rescheduled based on the prediction information
and upon the SU’s requirement.

Although it might not coincide with the behavior of a real environment, the learning
phases of the previously presented CHMM based schemes assume an environment
with long-term stationarity, or at least longer than the duration needed to perform
the learning phases [160]. Furthermore, it is basically essential to consider in hard-
ware implementation the time duration required to perform the learning phase, to
make sure that the prediction output in terms of future subbands’ occupancy is ac-
curate and does not contain old information. Nevertheless, it has to be understood
at this point that a sufficient and a proper learning duration is indeed needed to be
taken into account so that the SU is able to learn its environment, as learning is an
essential part in CRN by definition [11, 144, 10].

Therefore, multiple offline learning phases under different environment conditions
are to be considered, where the resulting estimates are recorded in multiple look-up
tables. Hence, the computational load performed by the hardware is reduced, and
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the resulting occupancy information is up-to-date. Another considered solution is
based on a predefined and acceptable probability of collision by the PU. For this
reason, an upper bound on the number of iterations required during the forward-
backward algorithm as well as the length of the utilized learning sequence can be
defined during the learning phase. Ultimately, it is necessary to find a balance
between the requirements of the PU, and the capabilities of the CHMM prediction
schemes.

The HMM based scheme, unlike other machine learning-based approaches such as
support vector machine (SVM), requires a prior knowledge of the PU traffic pat-
tern [35], and it is sensitive to the chosen initial model estimates during its learning
phase [128]. In other words, a local maximum might be obtained during the forward-
backward algorithm due to an inaccurate initialization of the transition probabilities
[128]. To this end, the learning phase can be repeated with several different initial-
izations to obtain a global solution [160]. Furthermore, multiple learning phases
for multiple environments facilitate the SU in gaining a proper understanding and
comprehension to choose the initial parameters based on the present circumstances,
to obtain the MLE of the parameters of the model under consideration, as explained
earlier. In this work, k-means clustering has been considered as part of the pilot
phase for a proper initialization in order to obtain the conditional PDF of the re-
ceived signal under the occupancy state of the considered spectrum.

In terms of complexity, it has to be declared that the DHMM based scheme is less
complex than the presented CHMM based scheme. Furthermore, the presented cou-
pled CHMM scheme is even more complicated than the single chain schemes. As
stated earlier, one can adjust the schemes, in terms of the number of iterations and
the length of the learning sequence during the learning phase, for a least compu-
tationally complex scheme based on the requirements defined by the PU and the
suggestions discussed earlier in this section. Moreover, approaching the interdepen-
dencies between subbands in terms of a certain number of subbands defined in a
block reduces the complexity to an extent.
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Appendix A.

D-separation Concept

The most important concept in probabilistic models is the conditional independency,
as it plays an important role in simplifying the structure of the considered model as
well as its inference. The advantage of representing a model graphically is to figure
out the independence property of the joint distribution directly without the need of
performing any complicated analytical manipulations [52]. Given the three nonin-
tersecting nodes X1, X2, and X3 with their corresponding realizations x1, x2 and x3,
respectively, representing random variables in a graphical model, the expression

Pr {X1 = x1| X2 = x2, X3 = x3} = Pr {X1 = x1| X3 = x3} , (A.1)

indicates that X1 is conditionally independent of X2 given (conditioned on) X3.
Hence, their joint distribution can be written as

Pr {X1 = x1, X2 = x2| X3 = x3} = Pr {X1 = x1| X2 = x2, X3 = x3} Pr {X2 = x2| X3 = x3}
= Pr {X1 = x1| X3 = x3} Pr {X2 = x2| X3 = x3} ,

given (A.1) and the product rule in (2.2). In other words, upon conditioning on
X3, X1 and X2 are independent. This property can be represented in notations as

X1 ⊥⊥ X2 | X3.

Furthermore, the joint probability of X1, X2 and X3 can be expressed as

Pr {X1 = x1, X2 = x2, X3 = x3} =

Pr {X1 = x1| X3 = x3} Pr {X2 = x2| X3 = x3} Pr {X3 = x3} .
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A so-called direct separation criterion, or shortly d-separation, is important to iden-
tify and figure out the conditional independencies between nodes in a graph. Hence,
the resulting graph is simply represented, and its joint distribution is easily and
directly deduced [52]. Graphically, the conditional dependencies are represented via
arrows from node X3 to node X1, as well as from X3 to X2. Upon conditioning on
X3, the path between X1 and X2 is said to be blocked by node X3 [52]. As being
such an important property in DAG, the d-separation concept is presented in this
part of the thesis.

To properly define the d-separation criteria, let A, B and Cbe three nonintersecting
nodes in a DAG. Figure A.1 presents three different examples of paths in a DAG
where we condition on C.

C

A B

(a)

A B

C

(b)

A C B

(c)

Figure A.1.: Three examples for a path from node A to node B upon conditioning on C. The path
with respect to C is said to be: (a) tail-to-tail, (b) head-to-head, and (c) head-to-tail,
or equivalently tail-to-head.

The path from from node A to node B is said to be blocked by node C [52] if:

• the arrows in the defined path meet either head-to-tail, tail-to-head, or
tail-to-tail at node C or any node V in the set of C, or

• the arrows meet head-to-head at node E, where neither E nor its descendent
nodes are in the set of C.

In other words, if all possible paths from A to B are blocked upon conditioning on
C, then the following remarks are valid:
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1. A is d-separated from B by node C.

2. The joint distribution of the nodes in the graph satisfies the relation
A ⊥⊥ B | C.

The recursive relation for calculating the forward and backward probabilities rep-
resented in this work –irrespective of the implemented HMM scheme– are derived
and simplified based on the d-separation criteria, along with the Bayes and further
probabilistic rules [52]. Due to its notation simplicity, we consider the recursive re-
lations of the forward and backward probabilities for the DHMM scheme presented
in Section 5.2. Note that when defining αi,D(�) and βi,D(�), the dependencies on
the model ΓD still holds, however it is omitted in this part for notation simplicity
purposes.

Recursive Definition of the Forward Probability

The recursive relation for the forward probability αi,D(�), as presented in (5.18), is
derived based on the steps explained as follows. Starting with its definition

αi,D(�) = Pr {z0,D, . . . , z�,D, Q� = i}
= Pr {z0,D, . . . , z�,D| Q� = i} Pr {Q� = i} .

(A.2)

As the sequence z0,D, . . . , z�−1,D is actually d-separated from z�,D by Q�, i.e.,
z0,D, . . . , z�−1,D ⊥⊥ z�,D | Q�, the expression

Pr {z0,D, . . . , z�−1,D| z�,D, Q� = i} = Pr {z0,D, . . . , z�−1,D| Q� = i}

is valid, hence the right-hand side in (A.2) is rewritten as

αi,D(�) = Pr {z�,D| Q� = i} Pr {z0,D, . . . , z�−1,D| Q� = i} Pr {Q� = i}
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Upon considering both the Bayes and sum rules, αi,D(�) is written as

αi,D(�) = Pr {z�,D| Q� = i} Pr {z0,D, . . . , z�−1,D, Q� = i}
= Pr {z�,D| Q� = i} ∑

j

Pr {z0,D, . . . , z�−1,D, Q�−1 = j, Q� = i}

= Pr {z�,D| Q� = i} ∑
j

Pr {z0,D, . . . , z�−1,D, Q� = i| Q�−1 = j} Pr {Q�−1 = j} .

However, as z0,D, . . . , z�−1,D ⊥⊥ Q� | Q�−1, αi,D(�) is rewritten as

αi,D(�) = Pr {z�,D| Q� = i}∑
j

Pr {z0,D, . . . , z�−1,D| Q�−1 = j} Pr {Q� = i| Q�−1 = j} Pr {Q�−1 = j} ,

and via the Bayes rule

αi,D(�) = Pr {z�,D| Q� = i}︸ ︷︷ ︸
bizD

∑
j

Pr {z0,D, . . . , z�−1,D, Q�−1 = j}︸ ︷︷ ︸
αj,D(�−1)

Pr {Q� = i| Q�−1 = j}︸ ︷︷ ︸
aji

,

which is nothing but the expression in (5.18) for a certain model ΓD.

Recursive Definition of the Backward Probability

Furthermore, deriving the recursive relation of βi,D(�) goes in similar approach.
Based on the sum rule and the Bayes rules, its main definition can be expressed
as

βi,D(�) = Pr {z�+1,D, . . . , zLL−1,D| Q� = i}
=

∑
j

Pr {z�+1,D, . . . , zLL−1,D, Q�+1 = j| Q� = i}

=
∑

j

Pr {z�+1,D, . . . , zLL−1,D| Q� = i, Q�+1 = j} Pr {Q�+1 = j| Q� = i} .

Since z�+1,D, . . . , zLL−1,D ⊥⊥ Q� | Q�+1, the expression

Pr {z�+1,D, . . . , zLL−1,D| Q� = i, Q�+1 = j} = Pr {z�+1,D, . . . , zLL−1,D| Q�+1 = j} ,
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is valid, and βi,D(�) can be written as

βi,D(�) =
∑

j

Pr {z�+1,D, . . . , zLL−1,D| Q�+1 = j} Pr {Q�+1 = j| Q� = j} .

Moreover, z�+2,D, . . . , zLL−1,D ⊥⊥ Q� | Q�+1, indicating that

Pr {z�+2,D, . . . , zLL−1,D| Q�+1 = j, z�+1,D} = Pr {z�+2,D, . . . , zLL−1,D| Q�+1 = j} ,

hence, βi,D(�) is rewritten as

βi,D(�) =∑
j

Pr {z�+2,D, . . . , zLL−1,D| Q�+1 = j}︸ ︷︷ ︸
βj,D(�+1)

Pr {z�+1,D| Q�+1 = j}︸ ︷︷ ︸
bjzD

Pr {Q�+1 = j| Q� = i}︸ ︷︷ ︸
aij

,

which is given in (5.19).
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Appendix B.

Gaussian Mixture Models

For notation simplicity, and in order to focus on estimating the GMM parameters,
the state dependencies in the model presented here have been dropped, unlike in
(5.3), (4.6) and (6.7). A rather parametric model of an arbitrary D- dimensional
random vector X ∈ R

D is discussed here as a general case. Analogous to those
mentioned equations, a GMM with R ∈ N number of components, i.e, a model of
order R, is given by

pX (x ; Θ) =
R∑

r=1
wr N (x; μr, Σr), (B.1)

where x is a realization of X. In (B.1), the model’s parameters are presented in the
set Θ =

(
θ(1), . . . , θ(R)

)
, where θ(r) = (wr, μr, Σr) are the parameters defining the

rth Gaussian component. wr, μr and Σr are the weight, mean vector and covariance
matrix of the rth component, respectively. The weight wr in (B.1) satisfies the
conditions

0 ≤ wr ≤ 1 and
R∑
r

wr = 1.

Furthermore, the PDF of the rth Gaussian component is given by

f (x ; μr, Σr) = 1
(2π)D/2 (det Σr)1/2 exp

(
−1

2
(x − μr)ᵀ Σ−1

r (x − μr)
)

. (B.2)
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B.1. Estimating the GMM’s Parameters of a Certain

Order

Based on a sequence of Lx ∈ N mutually independent observations

x1, . . . , xLx , (B.3)

a best-fit GMM is obtained for a predefined R components by estimating the pa-
rameters in Θ. For this matter, the EM algorithm is employed iteratively based on
the MLE criterion. It requires proper parameter initialization, therefore the k-mean
clustering algorithm, known as the hard EM algorithm [55], is chosen for this pur-
pose. The main steps in k-means clustering as well as EM algorithms for GMM are
summarized as follows [125, 55].

k-means initialization

1. R number of observations are randomly chosen from the observed sequence in
(B.3) to be the initial values of the mean vectors μ(0)

r , ∀r = {1, . . . , R}.

2. The closest cluster center ψi for each xi with i = {1, . . . , Lx} is found, such
that ∣∣∣xi − μψi

∣∣∣2 = min
r=1,...,R

|xi − μr|2 .

3. Update each cluster center ψi iteratively by recalculating the rth mean vector.
At the mth iteration the mean vector is given by

μ(m)
r = 1

Lx∑
i=1

I (ψi = r)

Lx∑
i=1

I (ψi = r) xi,

where I (ψi = r) is an indicator function, where I (ψi = r) = 1 if the equality
ψi = r holds, and zero otherwise.

106



B.1. Estimating the GMM’s Parameters of a Certain Order

4. Upon exceeding the maximum number of iterations mk, the mean vector is
selected such that μr = μ(mk)

r [125]. Furthermore, wr and Σr are correspond-
ingly calculated based on μ(mk)

r as

wr = 1
Lx

Lx∑
i=1

I (ψi = r) ,

and

Σr =
1

Lx∑
i=1

I (ψi = r)

Lx∑
i=1

I (ψi = r)
(
xi − μ(mk)

r

) (
xi − μ(mk)

r

)ᵀ
.

Those values are then utilized as the best chosen initial estimate to be employed
during the EM algorithm, which to be described as follows.

The EM algorithm

Starting from the initial values Θ(0) =
(
w

(0)
1 , μ

(0)
1 , Σ(0)

1 , . . . , w
(0)
R , μ

(0)
R , Σ(0)

R

)
, which

are obtained via k-means clustering algorithm, and given the observed sequence in
(B.3), iterative update takes place. A new update at the (m + 1)th iteration, i.e.,
Θ(m+1) =

(
ŵ(m+1)

r , μ̂(m+1)
r , Σ̂(m+1)

r

)
, ∀r = {1, . . . , R}, is calculated by as

1. E-step: calculating the posteriori probability for the r = 1, . . . , R components
at the mth iteration, and for i = 1, . . . , Lx as

Pr
{

r | xi ; θ(m)
r

}
=

w(m)
r N (xi; μ(m)

r , Σ(m)
r )

R∑
h=1

w
(m)
h N (xi; μ

(m)
h , Σ(m)

h )
.

2. M-step: updating the parameters as follows:

ŵ(m+1)
r = 1

Lx

Lx∑
i

Pr
{

r | xi ; θ(m)
r

}
,
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μ̂(m+1)
r =

Lx∑
i=1

Pr
{

r | xi ; θ(m)
r

}
xi

Lx∑
i=1

Pr
{

r | xi ; θ
(m)
r

}

= 1
Lx ŵ

(m+1)
r

Lx∑
i=1

Pr
{

r | xi ; θ(m)
r

}
xi,

and

Σ̂(m+1)
r = 1

Lx ŵ
(m+1)
r

Lx∑
i=1

Pr
{

r | xi ; θ(m)
r

}
(xi − μ̂(m+1)

r ) (xi − μ̂(m+1)
r )ᵀ.

3. This updating procedure continues until the increase in the likelihood function
is within a certain threshold ε, as

∣∣∣∣∣∣
p
(

x1, . . . , xLx ; Θ(m+1)
)

− p
(

x1, . . . , xLx ; Θ(m)
)

p (x1, . . . , xLx ; Θ(m))

∣∣∣∣∣∣ ≤ ε.

B.2. Estimating the Model Order

Before estimating the parameters in Θ, the model order R has to be pre-
defined. Different criteria, such as Akaike information criterion (AIC) and
Bayesian information criterion (BIC), can be employed to find the minimum number
of Gaussian components which are needed to best describe the observed sequence
in (B.3) [125]. However, those criteria might over-estimate the model’s order and
provide inaccurate information regarding the accuracy of the estimated model [1].
Therefore, a heuristic approach [126] is performed to find the minimum number of
components R required such that the increase in the likelihood function based on a
certain R with respect to the one at R − 1 is below a certain threshold ε as

R = min
{

R̂ ∈ N :
∣∣∣∣∣p (x1, . . . , xLx) |R=R̂ −p (x1, . . . , xLx) |R=R̂−1

p (x1, . . . , xLx) |R=R̂−1

∣∣∣∣∣ ≤ ε

}
. (B.4)
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