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Zusammenfassung

Restart-Automaten sind ein formales Werkzeug zur Modellierung der lin-
guistischen Technik von Analyse durch Reduktion, die für die Analyse von
natürlichen Sprachen verwendet wird. Ein Restart-Automat M is ein Sprach-
akzeptanzgerät, das mit einem angegebenen Eingabewort w über einem Ein-
gabealphabet Σ entweder akzeptiert oder verwirft. Aber im Fall von Akzep-
tanz kann man sich für die Anzahl der akzeptierenden Rechnungen für die
Eingabe w interessieren, oder für die minimale Anzahl der Schritte (oder
Zyklen) in einer solchen akzeptierenden Rechnung. Um diese quantitativen
Fragen zu beantworten, führen wir das Konzept der gewichteten Restart-
Automaten ein. Ein solcher Automat ist als ein Paar (M,ω) definiert, wobei
M ein Restart-Automat vom Typ X mit einem Eingabealphabet Σ ist, und ω
eine Gewichtsfunktion von den Transitionen von M in einen Semiring S ist.
Auf diese Weise kann jeder gewichtete Restart-Automat (M,ω) eine Funktion
von Σ∗ zu S repräsentieren. Wir zeigen einige syntaktische und semanti-
sche Eigenschaften dieser Funktionen wie obere Schranken (siehe [BFGM05]),
Wachstumsraten und Abschlusseigenschaften. In dieser Arbeit erweitern wir
auch gewichtete Restart-Automaten zu Transducern. Wir beweisen, dass für
die gewichteten monotonen Restart-Automaten mit Hilfssymbolen, die soge-
nannten RRWW-Automaten, die nach einem Rewrite-Schritt noch weiter die
Eingabe lesen können, strikt ausdrucksstärker sind als die sogenannten RWW-
Automaten, die nach einem Rewrite-Schritt sofort restarten müssen, was
sowohl im deterministischen als auch nichtdeterministischen Fall gilt. Es wird
das erste Mal gezeigt, dass eine Version der monotonen RRWW-Automaten
strikt ausdrucksstärker ist als die entsprechende Version der monotonen RWW-
Automaten. Schließlich erweitern wir die gewichteten Restart-Automaten
zu Sprachakzeptoren, indem eine Akzeptanzbedingung für das Gewicht der
akzeptierenden Rechnungen hinzugefügt wird. Wir zeigen, dass mit einer
solchen zusätzlichen Akzeptanzbedingung gewichtete Restart-Automaten von
einem gewissen Typ den sogenannten Nicht-Vergessenden Restart-Automaten
entsprechen. Des weiteren ist eine andere Klasse der von gewichteten Restart-
Automaten akzeptierten Sprachen unter der Operation des Schnitts abge-
schlossen. Es ist das erste Ergebnis, das zeigt, dass eine Klasse der Sprachen,
die durch eine generelle Klasse der Restart-Automaten definiert ist, unter
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dieser Operation abgeschlossen ist.
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Abstract

Restarting automata have been introduced as a formal tool to model the anal-
ysis by reduction, which is a technique used in linguistics to analyse sentences
of natural languages. A restarting automaton M is a language accepting de-
vice: Given an input word w over some input alphabet Σ, it either accepts
or rejects. But in case of acceptance, one may be interested in the number
of accepting computations of M on input w, or one may be interested in the
least number of steps (or cycles) in such an accepting computation. For an-
swering such quantitative questions, we introduce the concept of a weighted
restarting automaton. Such an automaton is defined as a pair (M,ω), where
M is a restarting automaton of type X on some input alphabet Σ, and ω is a
weight function from the transitions of M into a semiring S. In this way, a
weighted restarting automaton (M,ω) can represent a function fM

ω from Σ∗

into S. We show some syntactic and semantic properties of these functions
such as upper bounds (see [BFGM05]), growth rates and closure properties. In
this work, we also extend weighted restarting automata to transducers. We
prove that for weighted monotone restarting automata with auxiliary sym-
bols, the variant that may keep on reading after performing a rewrite step
(the so-called RRWW-automaton) is strictly more expressive than the variant
that must restart immediately after performing a rewrite step (the so-called
RWW-automaton), which again holds in the deterministic as well as in the
nondeterministic case. This is the first time that a version of the monotone
RRWW-automaton is shown to differ in expressive power from the correspond-
ing version of the monotone RWW-automaton. Finally, we extend weighted
restarting automata to language acceptors by adding an acceptance condition
on the weight of its accepting computations. We will see that using such a
relative acceptance, weighted restarting automata of a certain type coincide
with the so-called non-forgetting restarting automata. In addition, another
class of languages accepted by weighted restarting automata is shown to be
closed under the operation of intersection. This is the first result that shows
that a class of languages defined in terms of a quite general class of restarting
automata is closed under the operation of intersection.
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Chapter 1

Introduction

Restarting automata have been introduced as a formal model for the linguistic
technique of analysis by reduction, which can be used to check the correct-
ness of natural language sentence [JMPV95]. In order to study quantitative
aspects of restarting automata, we introduce the concept of a weighted restart-
ing automaton. In this thesis weighted restarting automata of various types
and their computational power are studied. The main goal of this chapter is
to introduce the motivation, related works, and main results of the present
work. In additition, we also describe the structure of this thesis.

1.1 Motivation

Analysis by reduction is a linguistic technique used to verify the syntactic cor-
rectness of sentences of a natural language [Str00]. This analysis consists of
sequences of local simplifications of a sentence, and during this process each
step preserves the correctness or incorrectness of the sentence. After a finite
number of steps, either a correct simple sentence is obtained, or an error is de-
tected. In the former case the given sentence is accepted as being syntactically
correct; if all possible sequences of simplifications yield errors, then the given
sentence is not syntactically correct. In addition, by this process the struc-
ture of the given sentence can be analysed and information on dependencies
and independencies between certain parts of the sentence can be derived. To
illustrate the principles of this technique, we present the following example:

She says that the seashells she sells are on the sunshine seashore.

In order to analyse this sentence, we read it from left to right until a phrase
is discovered that can be simplified. For example, we can delete the word that
or the word sunshine, and then the following sentences are obtained:

1



1.1. Motivation

(1) She says the seashells she sells are on the sunshine seashore.
(2) She says that the seashells she sells are on the seashore.

Obviously both these simplifications are correct, and so we can conclude
that the phrases that and sunshine are independent of each other. Hence,
from (1) and (2) the following sentence can be derived in the next step:

(3) She says the seashells she sells are on the seashore.

Further, it is easily seen that we cannot remove the phrase the seashells,
as the phrase She says depends on the phrase the seashells, and such a simpli-
fication would lead to a syntactic error. In order to simplify (3) we delete the
phrase She says or the phrase she sells, thus obtaining the following sentences:

(4) The seashells she sells are on the seashore.
(5) She says the seashells are on the seashore.

It is easy to observe that both these sentences derived from (3) through the
simplifications are syntactically correct. It follows that the phrase She says
and the phrase she sells are independent of each other. Hence, by deleting
these phrases we obtain the following simple sentence:

(6) The seashells are on the seashore.

The above simple sentence is easily verified as being syntactically correct,
and the analysis of the given sentence is completed with success. Thus, we
can conclude that the original sentence is syntactically correct. In addition,
we have seen that by this analysis some information on dependencies and
independencies between certain parts of the sentence is obtained (see, e.g.,
[Tes59, Niv09]).

The restarting automaton was introduced as a formal model of analysis
by reduction [JMPV95, LPS07]. As shown in Figure 1.1, such an automaton
consists of a finite-state control and a flexible tape with end markers, on which
a read/write window of a fixed positive size operates. Based on the state and
the window content, the automaton may perform a move-right step, which
shifts the window one position to the right and changes the state. It may also
execute a rewrite step, which replaces the content of the window by a word
that is strictly shorter, places the window immediately to the right of the
newly written word, and changes the state. Finally, it may perform a restart
step, which moves the window back to the left end of the tape and resets
the automaton to its initial state, or it may make an accept step. Observe
that a rewrite step shortens the content of the tape, and it is assumed that
the length of the tape is shortened accordingly. In addition, it is required

2



Chapter 1. Introduction

c| $

read/write window

finite
control

flexible tape

Figure 1.1: Schematic representation of a restarting automaton.

that before a restart operation can be executed, exactly one rewrite must
have taken place, that is, the automaton can be seen as working in cycles,
where each cycle begins with the window at the left end of the tape and the
finite-state control being in the initial state, then some move-right steps are
executed, then a single rewrite step is performed, then again some move-right
steps may be executed, and finally the cycle is completed by a restart step.
Thus, a computation consists of a finite sequence of cycles that is followed by
a tail computation, which consists of a number of move-right steps, possibly
a single rewrite step, and which is completed by an accept step or ends by
reaching a configuration for which no further step is defined. In the latter
case we say that the current computation halts without acceptance.

Many different types and variants of restarting automata have been intro-
duced and studied since 1995 (see, e.g., [JMPV97, JMPV98, JMPV99]). In
particular, many well-known classes of formal languages, like the regular lan-
guages REG, the deterministic context-free languages DCFL, the context-free
languages CFL, the Church-Rosser languages CRL, and the growing context-
sensitive languages GCSL have been characterized by various types of restart-
ing automata. An overview on restarting automata is given by [Ott06].

Just as finite automata, also restarting automata accept or reject their
inputs. Therefore, such an automaton can be seen as computing a Boolean
function. Weighted automata were introduced by [Sb61]. In these automata
each transition gets a quantitative value from some semiring S as a weight.
These weights can model the cost involved when executing a transition such as
the needed resources or time, or the probability or reliability of its successful
execution. By forming the product of all weights along a computation, a
weight can be assigned to that computation, and by forming the sum of all
weights of all accepting computations for a given input, an element of S is

3



1.2. Outline

associated with that input. For example, by using appropriate weights, we
can determine the number of ways that a word can be accepted by a finite
automaton. Weighted automata and their properties are described in detail
in the recent handbook by [DKV09].

After their introduction, weighted automata have been applied in many
areas like natural-language processing, speech recognition, optimization of
energy consumption, and probabilistic systems (see, e.g., [CDH09, MPR02,
MPR00]). Also many applications of them can be found in digital image
compression and model checking (see, e.g., [IK93, Bou06]). Due to these
applications, many different variants of weighted automata have been invented
and studied (see, e.g., [DK17, DHV15, DK13, DM11, ICJ14]). Following this
development, we introduce weighted restarting automata in order to study
quantitative aspects of computations of restarting automata.

A weighted restarting automaton M is given by a pair (M,ω), whereM is
a restarting automaton on some input alphabet Σ, and ω is a weight function
that assigns a weight from some semiring S to each transition of M . As
outlined above, M defines a value fM

ω (w) from S for each input word w ∈ Σ∗.
Thus, M defines a function fM

ω : Σ∗ → S. By looking at different semirings S
and different weight functions ω, various quantitative aspects of the behavior
of M can be expressed through these functions. For example, by taking S
to be the semiring of natural numbers with addition and multiplication, we
can count the number of accepting computations for each input, or by using
the tropical semiring, we can determine the minimal number of cycles in an
accepting computation for each input.

1.2 Outline

Now we describe the structure of this thesis and the main results of the present
work in short. We begin with some basic notions and definitions on formal
languages and relations in Chapter 2. Then, we introduce the concept of
the weighted restarting automaton that is the central notion of this work in
Chapter 3.

As mentioned above, each weighted restarting automaton can represent
a function f : Σ∗ → S. We are interested in the syntactic and semantic
properties of these functions. In Chapter 4 we study their closure properties
under various operations. If the semiring S is linearly ordered, then we can
abstract this function to a function from N into S by taking

f̂M
ω (n) = max{ fM

ω (w) | w ∈ Σ∗, |w| = n },

where |w| denotes the length of the word w. Growth rates of and upper bounds
for such functions will also be investigated in Chapter 4.

4



Chapter 1. Introduction

Further, if S is the semiring of formal languages over a finite alphabet Δ,
then fM

ω is a transformation from Σ∗ into the languages over Δ. In fact, it is
easily seen that the transformations computed by the restarting transducers
introduced by [HO12] occur as a special case. In this work we extend weighted
restarting automata to transducers. In Chapter 5 we will study the classes of
relations that are computed by weighted restarting automata and restarting
transducers, compare some of these classes to each other, and relate them
to the class of pushdown relations and some of its subclasses. We will see
that for weighted monotone restarting automata with auxiliary symbols, the
variant that may keep on reading after performing a rewrite step (the so-
called RRWW-automaton) is strictly more expressive than the variant that
must restart immediately after performing a rewrite step (the so-called RWW-
automaton), which holds in the deterministic as well as in the nondeterministic
case. This is the first time that a version of the monotone RRWW-automaton
is shown to differ in expressive power from the corresponding version of the
monotone RWW-automaton.

Next, we extend weighted restarting automata to language acceptors by
placing a relative acceptance condition on the value of the function fM

ω (w)
for a weighted restarting automaton M = (M,ω) and an input w ∈ Σ∗. The
purpose of Chapter 6 is to study the classes of languages that are accepted by
weighted restarting automata relative to subsets of various semirings, to show
their closure properties and membership problems, and to compare them to
each other. In particular, a certain class of languages accepted by weighted
restarting automata is shown to be closed under the operation of intersection.
This is the first result that shows that a class of languages defined in terms
of a quite general class of restarting automata is closed under the operation
of intersection.

Finally, this thesis closes with a summary and some problems for future
work, which are given in Chapter 7.
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Chapter 2

Formal Languages and
Relations

It is the goal of this chapter to present basic foundations for formal languages
and relations that we will use in the forthcoming chapters of this thesis. It
consists of two sections, where the first one restates some well-known classes of
formal languages and corresponding automata. The second section introduces
the classes of rational relations and pushdown relations. In particular, we
define some restricted classes of pushdown relations and study the inclusion
relations between them.

2.1 Formal Languages and Automata

We start with some basic definitions and notations of formal languages and
mathematics. A finite set of symbols is called an alphabet, and in general we
denote it by the capital Greek letter Σ. A finite string w of symbols from an
alphabet Σ is called a word over the alphabet Σ. Throughout the paper we
will use |w| to denote the length of a word w, λ to denote the empty word,
and |X| to denote the number of elements in a set X. Further, |w|a denotes
the number of occurrences of symbol a in the word w, and wR denotes the
reversal of w. By Σ∗ we denote the set of all the words over the alphabet Σ,
Σ+ is used to denote the set of all the non-empty words over Σ, and for each
n ≥ 0, Σn is used to denote the set of all words of length n over Σ. In addition,
let X be a set of words over some alphabet Σ, then P(X) denotes the power
set of X, Pfin(X) denotes the set of all finite subsets of X, and X denotes the
complement of X in Σ∗, that is, X = Σ∗ �X. A (formal) language is defined
as a set of words over some alphabet Σ, that is, L ⊆ Σ∗ or L ∈ P(Σ∗). Finally,
let N denote the set of natural numbers, and let N+ denote the set of positive
natural numbers.

7



2.1. Formal Languages and Automata

Regular Languages and Finite State Automata

Here we consider some well-known classes of formal languages. First, we intro-
duce the class of regular languages (REG for short), which can be characterized
by finite state automata.

Definition 2.1.1 ([AU72]). A nondeterministic finite state automaton (NFA
for short) is defined by a 5-tuple A = (Q,Σ, δ, q0, F ), where Q is a finite set
of states, Σ is an input alphabet, δ : Q × Σ → Pfin(Q)

1 is a finite transition
function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states.

A configuration of an NFA A is described by a pair (q, wi), where q ∈ Q is
the current state and wi ∈ Σ∗ is the unread part of the input word. Further,
a transition of A between configurations (q, wi) and (q′, wi+1) is denoted by
(q, wi) �A (q′, wi+1), iff q

′ ∈ δ(q, a), where a ∈ Σ and wi = awi+1. This means
that the configuration (q′, wi+1) can be reached from the configuration (q, wi)
by performing a single transition step. Let δ∗ denote the natural extention
of δ to words over Σ, that is, δ∗(q, λ) = {q}, and δ∗(q, ua) = ⋃

q′∈δ∗(q,u)
δ(q′, a),

where q ∈ Q, u ∈ Σ∗ and a ∈ Σ. By �∗
A we denote the reflexive transitive

closure of this relation. After processing all the symbols of the input word, if
A halts in a state q ∈ F , we say that A accepts. For a configuration (q, wi),
if δ(q, a) = ∅, where a ∈ Σ and wi = awi+1, then A necessarily halts, and
we say that A rejects. For an input word w ∈ Σ∗, a computation C of A is
defined as a sequence of the transitions starting from the initial configuration
(q0, w) and ending in the halting configuration (qf , w

′) for some qf ∈ Q and
w′ ∈ Σ∗, i.e., (q0, w) �∗

A (qf , w
′). If the computation C is completed with

an accepting configuration, that is, qf ∈ F and w′ = λ, then C is called an
accepting computation; Otherwise, it is called a non-accepting computation.
Obviously, for each input word w ∈ Σ∗, a computation of A on w is finite.
The language accepted by A is defined as

L(A) = {w ∈ Σ∗ | ∃q ∈ F : (q0, w) �∗
A (q, λ)}.

Finally, the automaton A is a deterministic finite state automaton (DFA for
short), if based on a state q ∈ Q and a symbol a ∈ Σ, there is at most one
transition defined, i.e., |δ(q, a)| ≤ 1. Thus, each configuration of a DFA has
at most one successor configuration, and a DFA has at most one accepting
computation for any input. It is well-known that NFAs are equivalent to
DFAs, and they characterize the class REG of regular languages (see, e.g.,
[HU79, Har78]). Now we present a simple example of a DFA.

1Note that there are some other variants of finite state automata such as the variant
that can perform arbitrarily many λ-steps.
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Example 2.1.1. Let A = ({q0, q1, q2, q3, q4, q5}, {a}, δ, q0, {q0, q2, q3, q4}) be the
DFA, where the transition function δ is defined as follows:

(1) δ(q0, a) = {q1}, (4) δ(q3, a) = {q4},
(2) δ(q1, a) = {q2}, (5) δ(q4, a) = {q5},
(3) δ(q2, a) = {q3}, (6) δ(q5, a) = {q0}.

It is easy to see that an input word w of length that is divisible by 2 or 3
can be accepted by the DFA A, that is, L(A) = {an | n ≡ 0 mod 2 or n ≡ 0
mod 3}.

Context-free Languages and Pushdown Automata

A finite state automaton can be extended to a pushdown automaton (PDA for
short) by equipping it with a memory, the so-called pushdown. Each transition
of a PDA is based on the current state and input symbol, and the top of
the pushdown, optionally popping the top of the pushdown, and optionally
pushing new symbols onto the pushdown.

Definition 2.1.2 ([AU72]). A PDA is defined by a 7-tuple P = (Q,Σ, X, q0,
Z0, F, δ), where Q is a finite set of states, Σ is an input alphabet, X is a
pushdown alphabet, q0 ∈ Q is the initial state, Z0 ∈ X is the bottom marker
of pushdown, F ⊆ Q is the set of final states, and δ : Q × (Σ ∪ {λ}) ×X →
Pfin(Q×X∗) is a finite transition function.

A configuration of a PDA P can be written as a 3-tuple (q, u, α), where
q ∈ Q is the current state, u ∈ Σ∗ is the still unread part of the input, and
α ∈ X∗ is the current content of the pushdown with the first letter of α at
the bottom. The language accepted by P is defined as

L(P ) = {w ∈ Σ∗ | ∃q ∈ F, α ∈ X∗ : (q0, w, Z0) �∗
P (q, λ, α)}.

Further, the PDA P is a deterministic pushdown automaton (DPDA for short),
if |δ(q, a, α)| + |δ(q, λ, α)| ≤ 1 for each state q ∈ Q, a ∈ Σ, and α ∈ X ∪ {λ}.
The classes of languages that are accepted by PDAs and DPDAs coincide with
the classes of context-free languages (CFL for short) and deterministic context-
free languages (DCFL for short), respectively. Now we give a simple example
of a PDA.

Example 2.1.2. Let P1 = (Q,Σ, X, q0, Z0, F, δ) be the PDA, where Q =
{q0, q1, q2, q3, q4, qe} is a finite set of states, Σ = {a, b, c, d} is an input al-
phabet, X = {Z0, Z1} is a pushdown alphabet, q0 ∈ Q is the initial state,
Z0 ∈ X is the bottom marker of pushdown, F = {qe} is the set of final states,

9



2.1. Formal Languages and Automata

and the transition function δ is defined as follows:

(1) δ(q0, a, Z0) = {(q1, Z0Z1)}, (6) δ(q3, b, Z1) = {(q4, λ)},
(2) δ(q1, a, Z1) = {(q1, Z1Z1)}, (7) δ(q4, b, Z1) = {(q3, Z1)},
(3) δ(q1, b, Z1) = {(q2, λ), (q3, Z1)}, (8) δ(q4, d, Z0) = {(qe, Z0)},
(4) δ(q2, b, Z1) = {(q2, λ)}, (9) δ(q0, c, Z0) = {(qe, Z0)},
(5) δ(q2, c, Z0) = {(qe, Z0)}, (10) δ(q0, d, Z0) = {(qe, Z0)}.

For an input word w, when processing the prefix an, the PDA P1 pushes
correspondingly many Z1-symbols onto its pushdown. Then, it guesses whether
|w|a = |w|b or 2 · |w|a = |w|b. Finally, P1 checks its guess by reading the
information for the number of a-symbols from the pushdown. Thus, it is easily
seen that the language accepted by P1 is

L(P1) = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}.

It is important to notice that there exist some context-free languages that
do not belong to DCFL, that is, DCFL � CFL. For example, the language
L(P1) given in the example above cannot be accepted by any DPDA (see
[Yu89]). Further, it is also clear that REG ⊆ DCFL and this inclusion is
proper. Obviously, the language

L1 = {anbn | n ≥ N}

is deterministic context-free, but not regular, since an NFA cannot remem-
ber the number of a-symbols and compare it to the number of b-symbols.
Therefore, we have the following proper inclusion results.

Corollary 2.1.1. REG � DCFL � CFL.

Church-Rosser Languages, Growing Context-Sensitive Languages,
and Two-Pushdown Automata

We continue by introducing a stronger variant of pushdown automata, the so-
called two-pushdown automata [NO05]. A two-pushdown automaton (TPDA
for short) with pushdown windows of size k is a nondeterministic automaton
T = (Q,Σ,Γ, δ, k, q0, Z0, t1, t2, F ), where Q is a finite of states, Σ is a finite
input alphabet, Γ is a finite tape alphabet containing Σ, q0 ∈ Q is the initial
state, Z0 ∈ Γ\Σ is the bottom marker of the pushdown stores, t1, t2 ∈ (Γ\Σ)∗
is the preassigned content of the first and second pushdown store, respectively,
F ⊆ Q is the set of final states, and δ is the transition function. To each
triple (q, u, v), where q ∈ Q is a state, u ∈ Γk∪{Z0} ·Γ<k is the content of the
topmost part of the first pushdown, and v ∈ Γk ∪ Γ<k · {Z0} is the content of
the topmost part of the second pushdown, it associates a finite set of triples

10
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from Q × Γ∗ × Γ∗. The automaton T is a deterministic TPDA (DTPDA for
short), if δ is a (partial) function. A configuration of a (D)TPDA is described
by a triple (q, u, v), where q ∈ Q is the current state, u ∈ Γ∗ is the content
of the first pushdown with the first symbol of u at the bottom and the last
symbol of u at the top, and the v ∈ Γ∗ is the content of the second pushdown
with the last symbol of v at the bottom and the first symbol of v at the top. It
is worth to mention that the input for a (D)TPDA is provided as a part of the
initial content of the second pushdown. Therefore, in order to consume the
input completely and accept, a (D)TPDA always needs to empty its pushdown
stores, that is, the language accepted by a (D)TPDA T is defined as

L(P ) = {w ∈ Σ∗ | ∃q ∈ F : (q0, Z0t1, wt2Z0) �∗
T (q, λ, λ)}.

It is well-known that TPDAs have the same computational power as Turing
Machines, and the class of recursively enumerable languages (RE for short)
is characterized by the latter model [HMU01]. Now we introduce some re-
stricted variants of TPDAs given in [BO98]. A (D)TPDA is called shrink-
ing if there exists a weight function ϕ : (Q ∪ Γ)∗ → N such that, for all
transitions (q′, u′, v′) ∈ δ(q, u, v), ϕ(q′u′v′) < ϕ(quv). A (D)TPDA is called
length-reducing if |u′v′| < |uv| holds for all transitions (q′, u′, v′) ∈ δ(q, u, v).
Obviously, the length-reducing TPDA is a special case of the shrinking TPDA.
For these restricted variants of TPDAs, there are some characterizations given
in [BO98, NO05, DW86, Nie03]. A language is a Church-Rosser language
(CRL for short), if and only if it is accepted by a shrinking DTPDA, if and
only if it is accepted by a length-reducing DTPDA. A language is a growing
context-sensitive language (GCSL for short), if and only if it is accepted by a
shrinking TPDA, if and only if it is accepted by a length-reducing TPDA. It is
easy to see that DCFL � CRL � GCSL and CFL � GCSL. Further, we consider
the languages

L2 = {ww | w ∈ {a, b}∗ }
and

L3 = {a2n | n ≥ 0}.
It is known that the language L2 is not context-free, while L2 = {a, b}∗ � L2

is a context-free language. On the other hand, L2 does not belong to the
language class CRL, and it follows that L2 ∈ CFL \ CRL. Together with the
fact that L3 ∈ CRL \CFL, we can conclude that the language classes CFL and
CRL are incomparable under inclusion (see, e.g., [BO98, MNO88, Nar84]). Of
course, GCSL is a proper subset of the class of context-sensitive languages
(CSL for short). Finally, the language class RE contains some languages that
are not context-sensitive [HU79]. The inclusion relations between the above
language classes are summarized in the diagram in Figure 2.1.
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RE

CSL

GCSL

CRLCFL

DCFL

REG

Figure 2.1: Hierarchy of some well-known classes of formal languages. An
arrow denotes a proper inclusion, and classes that are not connected through
a sequence of arrows are incomparable with respect to inclusion.

2.2 Relations and Transducers

We have seen that the automata introduced in the previous section can only
accept or reject its input, that is, such an automaton simply determines
whether the input belongs to the language that it accepts. Now we turn
to transducers that are the devices realizing transductions and relations. A
(binary) relation R is defined as a subset of the Cartesian product of two sets
of words, i.e., R ⊆ Σ∗ ×Δ∗ for some alphabets Σ and Δ. The aim of this sec-
tion is to present some well-known classes of relations and the corresponding
transducers.

2.2.1 Rational Relations and Finite State Transducers

In this section we will shortly recall the class of rational relations (RAT for
short), which is described by finite state transducers (see, e.g., [Ber79, Eil74]).

Definition 2.2.1 ([Ber79]). A finite state transducer (FST for short) T is
defined by a 6-tuple T = (Q,Σ,Δ, δ, q0, F ), where Q is a finite set of states, Σ
is a finite input alphabet, Δ is a finite output alphabet, δ : Q × (Σ ∪ {λ}) →
Pfin(Q ×Δ∗) is a transition function, q0 ∈ Q is the initial state, and F ⊆ Q
is a finite set of final states.

12
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We see that an FST is obtained from an NFA by adding an output word to
each (λ-)transition. The output produced during a computation is then simply
the concatenation of all output words produced during that computation.
Therefore, each FST represents a connection between an input language and
an output language. A configuration of an FST T is a triple (q, u, v), where
q ∈ Q is the current state, u ∈ Σ∗ is the unread part of the input, and v ∈ Δ∗

is the output produced so far. The transduction computed by T is defined as

T (u) = {v ∈ Δ∗ | ∃q ∈ F : (q0, u, λ) �∗
T (q, λ, v)}

for all u ∈ Σ∗. Let L be the language accepted by the underlying NFA 2 of an
FST T , i.e., the input language (denoted by L(T )). Then the output language
of T is defined as

T (L) = {v ∈ T (u) | u ∈ L}.

Theorem 2.2.1 ([Ber79]). Let T = (Q,Σ,Δ, δ, q0, F ) be an FST, and let
L ⊆ Σ∗ be the input language of T . Then the output language T (L) ⊆ Δ∗ is
regular.

The relation computed by an FST T is the set of pairs consisting of input
and output sequences. Formally, it is defined as

Rel(T ) = {(u, v) ∈ Σ∗ ×Δ∗ | v ∈ T (u)}.

Now we present a simple example of an FST.

Example 2.2.1. Let T1 = ({q0, q1}, {a}, {b}, δ, q0, {q0}) be an FST, where δ
contains the following transitions:

δ(q0, a) = {(q1, λ)} and δ(q1, a) = {(q0, b)}.

It is easily seen that the underlying DFA of T1 accepts the input words w of
even length, and for each input word w = a2n, the output is bn. Hence, the
relation computed by T1 is Rel(T1) = {(a2n, bn) | n ≥ 0}.

It is well-known that the class RAT of rational relations can be character-
ized by FSTs [Ber79]. The applications of FSTs can be found in many areas
like e.g., language and speech processing (see [Moh97]). Additionally, some
transducer models based on FSTs are developed specially for the application
in electronic commerce (see, e.g., [AVFY00, Spi00]).

2Here we consider the variant of finite state automata that can perform λ-steps. It is
well-known that such an automaton A can be simulated by a finite state automaton A′ that
does not perform λ-steps, i.e., L(A) = L(A′) [HU79].
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2.2.2 Pushdown Relations and Pushdown Transducers

In this section we recall the notion of pushdown transducer (PDT for short).
In analogy to FST, a PDT is a PDA that produces an output word in each
step, and the output for an accepting computation is the concatenation of all
the output words that are produced during this computation.

Definition 2.2.2 ([CC83]). A PDT is defined by an 8-tuple T = (Q,Σ,Δ, X,
q0, Z0, F, δ), where Q is a finite set of states, Σ is an input alphabet, Δ is an
output alphabet, X is a pushdown alphabet, q0 ∈ Q is the initial state, Z0 ∈ X
is the bottom marker of the pushdown, F ⊆ Q is the set of final states, and
E : Q × (Σ ∪ {λ}) × X → Pfin(Q × X∗ × Δ∗) is a transition function that
produces a (possible empty) output word in each step.

A configuration of a PDT T is written as a 4-tuple (q, u, α, v), where q ∈ Q
is the current state, u ∈ Σ∗ is the still unread part of the input, α ∈ X∗ is
the current content of the pushdown with the first letter of α at the bottom,
and v ∈ Δ∗ is the output produced so far. The language accepted by the
underlying PDA of T is called the input language of T and denoted by L(T ).
The relation computed by T is defined as

Rel(T ) = { (u, v) ∈ Σ∗ ×Δ∗ | ∃q ∈ F, α ∈ X∗ : (q0, u, Z0, λ) �∗
T (q, λ, α, v) }.

Concerning the output language of a PDT the following result is known.

Theorem 2.2.2 ([Eve63]). If T = (Q,Σ,Δ, X, q0, Z0, F, δ) is a PDT, and if L
is the input language of T , then the output language T (L) ⊆ Δ∗ is context-free.

Now we present a simple example of a PDT.

Example 2.2.2. Let T2 = (Q,Σ,Δ, X, q0, Z0, F, δ) be the PDT, where Q =
{q0, q1, q2, q3, q4, qacc}, Σ = {a, b}, Δ = {c, d}, X = {Z0, Z1}, F = {qacc}, and
δ is defined as follows:

(1) δ(q0, a, Z0) = {(q1, Z0Z1, λ)},
(2) δ(q1, a, Z1) = {(q1, Z1Z1, λ)},
(3) δ(q0, λ, Z0) = {(qacc, Z0, λ)},
(4) δ(q1, b, Z1) = {(q2, λ, c), (q3, λ, d)},
(5) δ(q2, b, Z1) = {(q2, λ, c)},
(6) δ(q2, λ, Z0) = {(qacc, Z0, λ)},
(7) δ(q3, b, Z1) = {(q4, Z1, λ)},
(8) δ(q4, b, Z1) = {(q3, λ, d)},
(9) δ(q4, λ, Z0) = {(qacc, Z0, λ)}.

It is easily seen that the input language

L(T2) = {anbn | n ≥ 0} ∪ {anb2n | n ≥ 0}.
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On an input of the form w = anbn for n ≥ 0, the output cn is produced during
the computation, and on an input of the form w = anb2n for n ≥ 0, the
corresponding output is dn. We see that all pairs in the relation Rel(T2) are
of the form (anbn, cn) or (anb2n, dn), that is,

Rel(T2) = {(anbn, cn) | n ≥ 0} ∪ {(anb2n, dn) | n ≥ 0}.
A relation R ⊆ Σ∗ ×Δ∗ is called a pushdown relation, if R = Rel(T ) for

some PDT T . For example, the above relation Rel(T2) presented in Example
2.2.2 is a pushdown relation. By PDR we denote the class of all pushdown
relations. In [WO16a] we have introduced some restricted types of pushdown
relations. If T is a deterministic PDT (DPDT for short), then Rel(T ) is
called a deterministic pushdown relation. By DPDR we denote the class of all
deterministic pushdown relations. A pushdown relation R is called linearly
bounded, if there exists a constant c ∈ N such that |v| ≤ c · |u| holds for all
pairs (u, v) ∈ R, u �= λ. By lbPDR we denote the class of all linearly bounded
pushdown relations. A pushdown relation R is called realtime, if it is computed
by a PDT T = (Q,Σ,Δ, X, q0, Z0, F, δ) that does not perform any λ-step, that
is, the transition function δ is of the form δ : Q×Σ×X → Pfin(Q×X∗×Δ∗).
By rtPDR we denote the class of all realtime pushdown relations. Finally, a
pushdown relation R is called almost-realtime 3 if it is computed by a PDT
T = (Q,Σ,Δ, X, q0, Z0, F, δ) for which each λ-step pops a symbol from the
pushdown, that is, if T has a λ-transition (q′, x′, v) ∈ δ(q, λ, x), then x′ = λ.
By artPDR we denote the class of all almost-realtime pushdown relations.

Now we study the inclusion relations between the various types of push-
down relations. First, we consider the relation

RuuR = { (u, uuR) | u ∈ {a, b}∗ },
taken from [WO16a] and give the following negative result.

Lemma 2.2.1 ([WO16a]). RuuR /∈ rtPDR.

Proof. We assume that T = (Q,Σ,Δ, X, q0, Z0, F, δ) is a realtime PDT such
that Rel(T ) = RuuR , where Q = {q0, q1, . . . , qm} is a finite set of states,
Σ = {a, b} is the input alphabet, Δ = {a, b} is the output alphabet, X =
{Z0, Z1, . . . , Zk} is the pushdown alphabet containing the bottom marker Z0,
q0 is the initial state, F ⊆ Q is the set of final states, and δ : Q × Σ ×X →
Pfin(Q×X∗ ×Δ∗) is the transition function. By the above definition

Rel(T ) = { (u, v) ∈ Σ∗ ×Δ∗ | ∃q ∈ F, α ∈ X∗ : (q0, u, Z0, λ) �∗
T (q, λ, α, v) }

= { (u, uuR) | u ∈ {a, b}∗ } = RuuR .

3In our paper [WHO15] such a relation is called a quasi-realtime pushdown relation.
However, the class of quasi-realtime languages has been introduced in [BG70], where this
notion expresses the fact that between any two reading steps only a bounded number of
λ-transitions are possible. To not confuse them, this class is renamed in [WO16a].
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It follows that for each input word u = a1a2 . . . an, where a1, a2, . . . , an ∈ Σ,
T has an accepting computation of the form

(q0, u, Z0, λ) �T (qi1 , a2a3 . . . an, α1, v1)
�T (qi2 , a3a4 . . . an, α2, v1v2)
�T . . .
�T (qin−1 , an, αn−1, v1v2 . . . vn−1)
�T (qin , λ, αn, v1v2 . . . vn−1vn)
= (qin , λ, αn, uu

R),

where qi1 , qi2 , . . . , qin−1 ∈ Q, qin ∈ F , α1, α2, . . . , αn ∈ X∗, and v1, v2, . . . , vn ∈
Δ∗.

Let c = max{ |v| | ∃q, a, x, q′, x′ : δ(q, a, x) = (q′, x′, v) }, that is, c is
the maximal length of an output word that T can produce in a single step.
Observe that c ≥ 2, as T produces an output of length 2n from an input of
length n. In order to output the suffix uR of the output, T needs at least 
n

c
�

steps. Let the number l ≥ �n
c
� such that T outputs the prefix u of the output

(possibly with the first few symbols of uR) during the first n − l steps, and
it outputs the major part of uR during the last l steps. It is easy to see that
n − �n

c
� ≥ n − l ≥ 
n

c
�. Next, we assume that T needs at least s steps to

produce the prefix a1a2 . . . an−l as output. Then 
n−l
c
� ≤ s ≤ n− l − 
 l+1−c

c
�,

as in steps s + 1 to n − l, the suffix an−l+c−1an−l+c . . . an of u is produced.
Thus, it follows that

|as+1as+2 . . . an−l| = n− l − s ≥
⌈
l + 1− c

c

⌉
≥ l + 1− c

c
∈ Ω

( n
c2

)
,

that is, while the infix as+1as+2 . . . an−l of u of length Ω
(

n
c2

)
is being read, the

suffix an−l+c−1an−l+c . . . an of length l− c+ 1 ≥ �n
c
� − c+ 1 of the prefix u of

the output is produced. Further, there is an index m ≥ n − l + Ω
(

n
c3

)
such

that T outputs the prefix anan−1 . . . as+1 of uR while processing the factor
an−l+1an−l+2 . . . am of the input. Since the suffix asas−1 . . . a1 of the output
must be produced while the rest am+1am+2 . . . an of the input is being read,
we obtain that n−m ≥ � s

c
� ≥ �n−l

c2
�. It follows that T produces the factor

an−l+c−1an−l+c . . . anan . . . as+2as+1

of the output while reading the factor as+1as+2 . . . an−lan−l+1 . . . am of the in-
put. Let s′ = max{s+1, n−l+c−1}, then the factor as′as′+1 . . . anan . . . as′+1as′
of the output uuR is produced while the factor as+1as+2 . . . an−lan−l+1 . . . am
of the input is being read.

However, T has to produce the prefix anan−1 . . . as′+1as′ of the output uR

that matches the previous output as′as′+1 . . . an−1an. For this purpose, when
processing the factor as+1as+2 . . . an−l of the input and producing the output
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as′as′+1 . . . an, T must store the word as′as′+1 . . . an (possibly in an encoded
form of this word) on its pushdown. Then, when it processes the input symbols
an−l+1an−l+2 . . . am, it is to produce the output anan−1 . . . as′+1as′ , correspond-
ing to the previous output as′as′+1 . . . an−1an that is stored on the pushdown.
To do this, T has to take (and hence, also pop) this word from the pushdown.
However, now T cannot remember the suffix as′as′+1 . . . an of the output pro-
duced, and it has not yet seen the complete suffix am+1am+2 . . . an of the input.
Hence, T is not able to determine whether the suffix as′as′+1 . . . an of the out-
put produced is correct, and it can only compare the suffix am+1am+2 . . . an
of the input to the output word as′as′+1 . . . an of length n −m. As n −m ≥
�n−l

c2
� ∈ Ω( n

c3
), T cannot store this information in its finite-state control. Ac-

cordingly, it is not able to correctly compare the remaining part of the input
to the corresponding part of the output already produced. Thus, RuuR cannot
be computed by any realtime PDT.

By Lemma 2.2.1 the following inclusion result can be easily established.

Proposition 2.2.1 ([WO16a]). rtPDR � artPDR.

Proof. From the above definitions, we see that each realtime pushdown rela-
tion is also an almost-realtime relation. Thus, the relation class rtPDR is a
subset of the relation class artPDR, i.e., rtPDR ⊆ artPDR. To show the proper-
ness of this inclusion, we consider the relation RuuR defined above. We can
construct a PDT T such that Rel(T ) = RuuR , where T proceeds as follows.
For an input word u = a1a2 . . . an, first T reads all the input symbols and
outputs them, also pushing them onto the pushdown. This means that the
output u = a1a2 . . . an is produced. In each reading step, T guesses whether
the current symbol is the end of the input, and it empties its pushdown let-
ter by letter, producing the output uR = anan−1 . . . a1. Obviously, T is an
almost-realtime PDT, which completes the current proof.

We continue by studying the inclusion relation between the relation classes
artPDR and lbPDR. Let Rambmcn ⊆ {a, b, c}∗ × {a, b, c}∗ be the relation

Rambmcn = { (ambmcn, cnambm) | m,n ≥ 1 }.
Lemma 2.2.2 ([WO16a]). Rambmcn /∈ artPDR.

Proof. Assume that T = (Q,Σ,Δ, X, q0, Z0, F, δ) is an almost-realtime PDT
such that Rel(T ) = Rambmcn . Here Q = {q0, q1, . . . , qm} is a finite set of
states, Σ = {a, b, c} is the input alphabet, Δ = {a, b, c} is the output alphabet,
X = {Z0, Z1, . . . , Zk} is the pushdown alphabet containing the bottom marker
Z0, q0 is the initial state, F ⊆ Q is the set of final states, and δ : Q × (Σ ∪
{λ})×X → Pfin(Q×X∗ ×Δ∗) is the transition function, where δ(p, λ, x) =
(q, x′, v) implies that x′ = λ, that is, a λ-step must pop from the pushdown.
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2.2. Relations and Transducers

Let c = max{ |v| | ∃p, a, x, q, x′ : δ(p, a, x) = (q, x′, v) }, that is, c is the
maximal length of an output word that T can produce in a single step, and
let d = max{ |x′| − 1 | ∃p, a, x, q, v : δ(p, a, x) = (q, x′, v) ∈ δ }, that is, d is the
maximal size increase of the pushdown that T can realize in a single step.

As Rel(T ) = Rambmcn , for each input word of the form ambmcn, T has an
accepting computation that produces the output cnambm. To do this, T must
first guess the number of c-symbols and then produce this many c-symbols as
the prefix of the output. While processing the prefix ambm of the input, T
can push at most 2 ·m · d symbols onto its pushdown, and so it can execute
at most this many λ-steps. Thus, this initial part of the computation consists
of at most 2 · m · (d + 1) steps, and accordingly, during this phase at most
2 · m · (d + 1) · c symbols can be produced as output. Thus, if we choose n
to be a constant such that n > 2 · m · (d + 1) · c, then only c-symbols have
been produced as output while consuming all the a- and b-symbols. Let r be
the number of the c-symbols that are produced so far, then the output cn−r is
still to be produced. Now T is in some internal state, and it has some finite
string on its pushdown. If n is sufficiently large, T has to consume even some
symbols of the suffix cn of the input to produce the remaining part cn−r of
the prefix of the output. After that, T must compare the input syllable bm

to the prefix am and produce the suffix ambm of the output, while reading the
suffix cn of the input. For this purpose, it must store the syllable am (possibly
in an encoded form of it) on its pushdown while reading it, and then it must
read (and thereby pop) this information from the pushdown when reading
bm. However, the information of the number of a- and b-symbols is lost when
producing the syllable cn. In addition, T cannot store this information in its
finite-state control as the numberm is an arbitrary positive integer. Therefore,
T is not able to remember the correct value of m, and it can only output just
some suffix of the form am

′
bm

′
, where m = m′ cannot be verified. Thus,

Rel(T ) �= Rambmcn , which shows that Rambmcn does not belong to the relation
class artPDR.

By Lemma 2.2.2 the following inclusion result is easily obtained.

Proposition 2.2.2 ([WO16a]). artPDR � lbPDR.

Proof. Let R be the relation that is computed by an almost-realtime PDT
T , and let c ≥ 1 be the maximal length of a word that T can push on its
pushdown in a single step. During a computation of T on an input word u, T
can push at most c·|u| symbols onto its pushdown, and so it can excute at most
this many λ-transitions. Therefore, for the input word u, the computation
consists of at most (c + 1) · |u| steps. Let v be the output for u, and let d
be the maximal length of any output string produced by T in a single step.
It follows that the output v produced during this computation satisfies the
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inequality |v| ≤ d · (c + 1) · |u|. Thus, R is also linearly bounded, and so the
class artPDR is a subset of the class lbPDR, i.e., artPDR ⊆ lbPDR.

In Lemma 2.2.2 we have seen that Rambmcn /∈ artPDR. In order to prove
the properness of the above inclusion, for the relation Rambmcn we construct a
linearly bounded PDT T that proceeds as follows. First, let T guess the value
of n and output this many c-symbols, pushing them onto its pushdown. Next,
T compares the syllable am to the syllable bm and outputs ambm. Finally, T
takes c-symbols from its pushdown in order to check its guess for the value
of n. Hence, we see that Rambmcn is linearly bounded, which completes our
proof.

Next, we study the inclusion relation between the relation classes lbPDR
and PDR.

Proposition 2.2.3. lbPDR � PDR.

Proof. Clearly, the class lbPDR is a subset of the class of PDR, i.e., lbPDR ⊆
PDR. In order to prove the properness of this inclusion, we consider the
relation

R+ = { (am, bnambn) | m,n ≥ 1 }.
For the relation R+ we construct a PDT T that proceeds as follows. First,
T performs some λ-transitions, and in each step it outputs a b-symbol and
pushes it onto its pushdown. Then, T reads the input am and produces an
a-symbol in each reading step without changing the pushdown. Finally, it
outputs the suffix bn by reading the information on the number n from its
pushdown. If follows that Rel(T ) = R+, and thus R+ ∈ PDR. Obviously, R+

is not linearly bounded, which completes the current proof.

From the inclusion results above, now we can obtain the following conse-
quence for the inclusion relations between the above relation classes.

Theorem 2.2.3. rtPDR � artPDR � lbPDR � PDR.

The class of pushdown relations can be characterized in terms of context-
free languages and morphisms. For that we recall the following concept.

Definition 2.2.3 ([AU72]). A language L ⊆ Γ∗ characterizes a relation R ⊆
Σ∗ × Δ∗ if there exist two morphisms h1 : Γ∗ → Σ∗ and h2 : Γ∗ → Δ∗ such
that R = { (h1(w), h2(w)) | w ∈ L }.

In Chapter 3 of [AU72] it was shown that the pushdown relations are
characterized by the context-free languages. We now introduce a stronger
notion.

Definition 2.2.4 ([AU72]). A language L ⊆ (Σ∪Δ′)∗ strongly characterizes
a relation R ⊆ Σ∗ ×Δ∗ if
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1. Σ ∩Δ′ = ∅ and

2. there exist two morphisms h1 : (Σ∪Δ′)∗ → Σ∗ and h2 : (Σ∪Δ′)∗ → Δ∗

such that R = {(h1(w), h2(w)) | w ∈ L}, where
(2.1) h1(a) = a for all a ∈ Σ and h1(b) = λ for all b ∈ Δ′,

(2.2) h2(a) = λ for all a ∈ Σ and h2 is a copy isomorphism between Δ
and Δ′, that is, h2(b) ∈ Δ for all b ∈ Δ′ and h2(b) = h2(b

′) implies
that b = b′.

In terms of [AU72] this is expressed by saying that a certain subclass of
pushdown relations are strongly characterized by the context-free languages.
In the following we extend this result to lbPDR.

Proposition 2.2.4 ([WHO15]). Every linearly bounded pushdown relation is
strongly characterized by a context-free language.

Proof. Let R ⊆ Σ∗ × Δ∗ be an lbPDR, and let c be a constant such that
|v| ≤ c · |u| for all (u, v) ∈ R. From Definition 2.2.3 it follows that R is
characterized by a context-free language L ⊆ Γ∗ and two morphisms h1 :
Γ∗ → Σ∗ and h2 : Γ∗ → Δ∗. Thus, for each pair (u, v) ∈ R, there is a word
w ∈ L such that h1(w) = u and h2(w) = v. Now a strong characterization
would put the additional restriction |w| ≤ |u|+ |v| ≤ (c+1) · |u| on the length
of w, which is not necessarily the case for the above characterization in terms
of L.

To simplify the discussion, we assume that Γ, Σ, and Δ are pairwise dis-
joint. We introduce an additional alphabet Γ′ = {x′ | x ∈ Γ, h2(x) �= λ } and
take Γ0 = Γ ∪ Γ′. Further, we define a morphism h : Γ∗ → Γ∗

0, where x ∈ Γ:

h(x) =

⎧⎪⎨
⎪⎩
xx′, if h1(x) �= λ and h2(x) �= λ,

x′, if h1(x) = λ and h2(x) �= λ,

x, otherwise,

and we extend h1 and h2 to morphisms h′1 : Γ∗
0 → (Γ′ ∪ Σ)∗ and h′2 :

(Γ′ ∪ Σ)∗ → (Σ ∪ Δ)∗ through h′1(x) =

{
h1(x), x ∈ Γ
x, x ∈ Γ′

}
and h′2(x

′) ={
h2(x), x′ ∈ Γ′

x′, x′ ∈ Σ

}
.

Clearly, the language L′ = h′2(h
′
1(h(L))) ⊆ (Σ∪Δ)∗ is context-free. Let πΣ

and πΔ be the projections from (Σ∪Δ)∗ onto Σ∗ and Δ∗. Then R is strongly
characterized by L′ and the two projections πΣ and πΔ.

Finally, we compare the relation class RAT that is introduced in Section
2.2.1 to the relation class PDR. Let the relation

Ranbn = { (anbn, cn) | n ∈ N }.
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Chapter 2. Formal Languages and Relations

Obviously, Ranbn is a pushdown relation, while it is not rational, as an FST
is not able to compare the syllable an to the syllable bn. Further, it is rather
clear that each FST can be simulated by a PDT. Hence, we have the following
proper inclusion result.

Corollary 2.2.1 ([CC83]). RAT � PDR.

Note that an FST can compute a relation that is not linearly bounded.
Let T be an FST over Σ = {a} that proceeds as follows. First, T reads all
input symbols and outputs this many b-symbols. Then, it performs nondeter-
ministically many λ-steps, and in each step it produces a b-symbol as output.
It is easy to see that Rel(T ) = {(an, bm) | m ≥ n ≥ 0}. Obviously, there does
not exist a constant c such that m ≤ c · n. On the other hand, the relation
Ranbn is actually a realtime pushdown relation, while it is not rational. This
leads to the following incomparability result.

Proposition 2.2.5. The relation class RAT is incomparable to the relation
classes rtPDR, artPDR and lbPDR with respect to inclusion.

Pushdown Functions

Even though a DPDT T has only a single computation for each input w ∈ Σ∗,
it may produce several different outputs. This is exemplified by the following
simple example.

Example 2.2.3. Let T3 = (Q,Σ,Δ, X, q0, Z0, F, δ) be a DPDT, where Q =
{q0, q1, q2}, Σ = {a, b}, Δ = {c, d, e}, X = {Z0, Z1}, F = {q1, q2}, and δ is
defined as follows:

(1) δ(q0, a, Z0) = {(q0, Z0Z1, c)}, (4) δ(q0, b, Z1) = {(q1, Z1, d)},
(2) δ(q0, a, Z1) = {(q0, Z1Z1, c)}, (5) δ(q1, λ, Z0) = {(q2, λ, e)},
(3) δ(q0, b, Z0) = {(q1, Z0, d)}, (6) δ(q1, λ, Z1) = {(q1, λ, e)}.

It is easily seen that the input language is L(T3) = { anb | n ≥ 0 }. On input
w = anb, the computation of T3 proceeds as follows, where m ≤ n:

(q0, a
nb, Z0, λ) �n

T3
(q0, b, Z0Z

n
1 , c

n) �T3 (q1, λ, Z0Z
n
1 , c

nd)

�m
T3

(q1, λ, Z0Z
n−m
1 , cndem) �n−m

T3
(q1, λ, Z0, c

nden)

�T3 (q2, λ, λ, c
nden+1).

As q1 and q2 are final states, we see that Rel(T ) contains all pairs of the form
(anb, cndek), where 0 ≤ k ≤ n+ 1, that is,

Rel(T ) = { (anb, cndek) | n ≥ 0 and 0 ≤ k ≤ n+ 1 }.
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2.2. Relations and Transducers

Observe that by replacing transition (5) by (5′) δ(q1, λ, Z0) = (q1, Z0, e) we
obtain a DPDT T ′

3 that does not halt on input anb, satisfying

Rel(T ′
3) = { (anb, cndek) | n ≥ 0 and k ≥ 0 },

that is, T ′
3(a

nb) = { cndek | k ≥ 0 } is even infinite.

In the above example we see that T ′
3 can produce infinitely many e-symbols

by performing λ-steps in the final state q1. Further, a DPDT is not able to
guess whether the next symbol is the last symbol of the input. To resolve
these two problems, we introduce a well-behaved DPDT (wbDPDT for short)
that does not perform any λ-step in a final state, and that has a specific
end marker on its input tape. Thus, given an input word w, a wbDPDT
actually starts with the word w# on its input tape, where # /∈ Σ is a special
symbol. It is well-known that each DPDA is equivalent to a DPDA that does
not perform λ-steps in final states (see, e.g., [HU79]). Actually, specific end
markers are used quite commonly for DPDTs (see, e.g., [AU69]). Obviously,
for a wbDPDT T , the relation Rel(T ) is the graph of a (partial) function.
By DPDF we denote the class of all (partial) functions that are computed by
wbDPDTs, by lbDPDF we denote the subclass of DPDF that consists of all
(partial) functions that are linearly bounded, by artDPDF we denote the class
of all (partial) functions that are computed by wbDPDTs that must pop from
their pushdowns during λ-steps, and finally, rtDPDF denotes the class of all
(partial) functions that are computed by wbDPDTs without λ-steps.

The relation RuuR = { (u, uuR) | u ∈ {a, b}∗ } is the graph of the partial
function fuuR : {a, b}∗ → {a, b}∗ given by u �→ uuR for all u ∈ {a, b}∗. It is
easily seen that RuuR can be computed by an almost-realtime wbDPDT T that
proceeds as follows. Given an input word u, T starts with the word u# on
the tape, and it just reads the word u and pushes it onto its pushdown, also
producing output u during these reading steps. On seeing the symbol #, T
empties its pushdown letter by letter, producing the output uR. On the other
hand, from Lemma 2.2.1 we know that RuuR does not belong to the relation
class rtPDR. Thus, we have the following proper inclusion.

Proposition 2.2.6 ([WO16a]). rtDPDF � artDPDF.

Concerning the function class lbDPDF, we have the following result.

Proposition 2.2.7 ([WO16a]). lbDPDF = DPDF.

Proof. The inclusion from left to right is obvious, and thus it remains to show
the opposite direction.

Let T = (Q,Σ,Δ, X, q0, Z0, F, δ) be a wbDPDT. In order to show that
Rel(T ) is linearly bounded, it suffices to prove that T is linearly time bounded.
For this purpose, we have to determine an upper bound for the number of
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steps in an accepting computation of T for a given input. Given an input
word w ∈ Σn, the corresponding accepting computation of T contains n + 1
reading steps on the input symbols and the end marker #. Additionally, T
may execute a sequence of λ-steps before the first reading step, between two
reading steps, and after the last reading step. Therefore, such an accepting
computation consists of n+1 reading steps and n+2 sequences of λ-steps. We
can partition this computation into n+2 phases as follows. For 1 ≤ i ≤ n+1,
phase i consists of a (possibly empty) sequence of λ-steps that is followed
by the step that reads the i-th symbol of w#, and phase n + 2 consists of
a (possibly empty) sequence of λ-steps that ends by reaching a final state.
Clearly, the number of reading steps is linearly bounded. Now we have to
determine an upper bound for the length of these sequences of λ-steps.

For q ∈ Q � F and x ∈ X, if δ contains a λ-transition of the form
δ(q, λ, x) = (p, γ, v), then we define the set

N(q, x) = { (q′, α) ∈ Q×X∗ | ∃v ∈ Δ∗ : (q, λ, x, λ) �+
T (q′, λ, α, v) },

that is, N(q, x) consists of all pairs (q′, α) such that T can reach state q′

and pushdown content α through a non-empty sequence of λ-steps when
starting in state q with pushdown content x. As T cannot proceed with
an empty pushdown, we see that the pushdown is not emptied during the
computation (q, λ, x, λ) �+

T (q′, λ, α, v), or it is emptied in the last step and
α = λ. If the set N(q, x) is infinite, or if it contains a pair (q′, α) such that
(q′, λ, α, λ) �+

T (q′, λ, α, v) holds for some v ∈ Δ∗, then T cannot use the λ-
transition δ(q, λ, x) = (p, γ, v) in any of its accepting computations. Thus,
we can simply delete this λ-transition from T without effecting Rel(T ). Ac-
cordingly, we can now assume that all the sets N(q, x) are finite, and that
each of them can be linearly ordered with respect to the computation relation
induced by T , that is, N(q, x) = {(q1, α1), (q2, α2), . . . , (qm, αm)}, where
(q, λ, x, λ) �T (q1, λ, α1, v1) �T (q2, λ, α2, v1v2) �T . . . �T (qm, λ, αm, v1v2 . . . vm),

and v1, v2, . . . , vm ∈ Δ∗ are the output words generated in these steps. From
the definition of N(q, x) we see that either αm = λ, or αm = γmy for some
y ∈ X and T does not have a λ-step for state qm and pushdown sym-
bol y. We now replace the λ-transition δ(q, λ, x) = (p, γ, v) by δ(q, λ, x) =
(qm, αm, v1v2 . . . vm), which yields a wbDPDT T ′ from T such that Rel(T ′) =
Rel(T ). Now T ′ only has two types of λ-transitions:

• those that pop from the pushdown, which are obtained from the sets of
the form N(q, x) containing a pair (p, λ), and

• those that do not decrease the height of the pushdown, and which can-
not be followed by another λ-transition, which are obtained from the
remaining sets of the form N(q, x).
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Thus, for an input w ∈ Σn, if w ∈ L(T ) = L(T ′), then the accepting
computation of T ′ consists of n + 2 phases. Initially, the pushdown contains
only the symbol Z0. As T

′ cannot proceed with an empty pushdown, the first
phase consists of at most a single λ-step that does not pop from the pushdown,
and it is followed by the step that reads the first input symbol of w. In the
i-th phase, for 2 ≤ i ≤ n+ 1, T ′ may perform a (possibly empty) sequence of
λ-steps that pop from the pushdown, possibly a single λ-step that does not
decrease the height of the pushdown, and a reading step on the i-th symbol
of w#. Finally, phase n + 2 consists of a (possibly empty) sequence of λ-
steps that pop from the pushdown and possibly a single λ-step that does not
decrease the height of the pushdown and that reaches a final state. Therefore,
we can see that during this computation, there are at most n + 1 reading
steps and n + 2 λ-steps that push symbols onto the pushdown. Further, the
pushdown initially contains the bottom marker Z0. It follows that the height
of the pushdown is bounded from above by C · (2n+ 3) + 1 for a constant C
that only depends on T . This means that at most C · (2n + 3) + 1 λ-steps
can be executed that pop from the pushdown. Together with the 2n + 3
steps that push symbols onto the pushdown, the computation of T ′ on input
x ∈ Σn consists of at most 2n+ 3 + C · (2n+ 3) + 1 = (2C + 2) · n+ 3C + 4
steps. Therefore, the length of the output produced during this computation
is bounded by the number D · ((2C + 2) · |x| + 3C + 4) for some constant D
that only depends on T , which completes this proof.

We now compare artDPDF to lbDPDF and establish the following result.

Proposition 2.2.8 ([WO16a]). artDPDF = lbDPDF.

Proof. Continuing with the linearly bounded DPDT T ′ from the above proof,
we will show that Rel(T ′) can be computed by an almost-realtime DPDT.
First, we combine each non-deleting λ-transition of the form δ(q, λ, x) =
(q′, αy, v) with each reading transition of the form δ(q′, a, y) = (q′′, γ, v′) into
a transition of the form δ(q, a, x) = (q′′, αγ, vv′), where q ∈ Q�F , q′, q′′ ∈ Q,
a ∈ Σ, α, γ ∈ X∗, x, y ∈ X, and v, v′ ∈ Δ∗. Further, we modify the state set
and the transition function in such a way that each possible λ-transition that
is applicable after the end marker # has been read just pops from the push-
down. Note that this does not result in a change for the relation Rel(T ′), as
the only λ-steps that do not pop from the pushdown and that can be used in
an accepting computation after the end marker has been read end the compu-
tation by entering a final state. By these changes we obtain an almost-realtime
DPDT T ′′. For an input w ∈ L(T ′) of length n, in analogy to the above proof,
the corresponding accepting computation of T ′ can be partitioned into n+ 2
phases. From the definition above it follows immediately that T ′′ can simulate
phases 1 to n + 1 of this computation. In addition, as mentioned above, it
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can execute the deleting λ-steps of phase n + 2, and the final non-deleting
λ-step is of this phase is replaced by a deleting λ-step. Hence, it follows that
Rel(T ′′) = Rel(T ′) holds. Thus, we obtain the above result.

Together Propositions 2.2.6, 2.2.7 and 2.2.8 yield the following summary
result.

Theorem 2.2.4. rtDPDF � artDPDF = lbDPDF = DPDF.

Further, we study the inclusion relation between the relation classes artDPDF
and rtPDR.

Theorem 2.2.5. The relation class artDPDF is incomparable to the relation
class rtPDR with respect to inclusion.

Proof. First, as mentioned above, the relation RuuR does not belong to the re-
lation class rtPDR, while it can be computed by an almost-realtime wbDPDT.
Now we consider the relation

Rab = { (anbn, cn) | n ≥ 0 } ∪ { (anb2n, dn) | n ≥ 0 }.

We construct a realtime PDT T that proceeds as follows. Given an input
word w, T guesses whether |w|a = |w|b or 2|w|a = |w|b. In the case that
|w|a = |w|b, T pushes all a-symbols onto its pushdown, and when processing
the syllable bn, it empties its pushdown letter by letter, producing the output
cn. If T guesses that 2|w|a = |w|b, then after pushing all a-symbols onto
the pushdown, it first simply reads a b-symbol, and then it reads a b-symbol,
also popping an a-symbol from its pushdown and producing a d-symbol as
output, alternatingly. Therefore, by consuming all b-symbols T can produce
the output dn without performing λ-steps. On the other hand, it is easily
seen that the relation Rab cannot be computed by any DPDT, as the language
Lab = {anbn, anb2n | n ≥ 0 } is not deterministic context-free. Hence, the
incomparability result can be obtained.

In this section we introduced pushdown relations and some restricted types
of pushdown relations. Finally, we summarize the results on the inclusion
relations between these relation classes in the diagram in Figure 2.2.
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PDR

lbPDR

��

artPDR

��

rtPDR
��

DPDF lbDPDF artDPDF

��

rtDPDF
��

��

Figure 2.2: Hierarchy of various types of pushdown relations. An arrow de-
notes a proper inclusion, the equalities are denoted by =, and classes that are
not connected through a sequence of arrows are incomparable with respect to
inclusion.
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Chapter 3

Weighted Restarting Automata

We already mentioned in Section 1 that restarting automata have been intro-
duced as a formal model for the linguistic technique of analysis by reduction,
which can be used to check the correctness of natural language sentences. In
order to study quantitative aspects of restarting automata, we introduce the
concept of a weighted restarting automaton. Such an automaton is defined
by a pair (M,ω), where M is a restarting automaton on some input alpha-
bet Σ, and ω is a weight function that assigns an element of a given semiring
S to each transition of M . This chapter comprises three sections. In the first
section, we recall the definition and basic properties of restarting automata
and present some examples. The second section briefly restates the notions of
monoid and semiring that we will use below. In Section three, we introduce
the notion of weighted restarting automaton that is the central notion of this
work, and show some examples of weighted restarting automata.

3.1 Restarting Automata

In this section, we first recall the definition and basic properties of restarting
automata and present some examples of restarting automata. Further, we
introduce some variants of restarting automata and give some results on their
expressive power from earlier works.

3.1.1 Definitions and Examples

As described above restarting automata are language accepting devices that
consist of a finite-state control and a read/write window that works on a flex-
ible tape that is delimited by end markers. Formally, a restarting automaton
is described as follows.

Definition 3.1.1. A restarting automaton (RRWW-automaton for short) is
a one-tape machine that is defined as an 8-tuple M = (Q,Σ,Γ, c, $, q0, k, δ),
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where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape
alphabet containing Σ, the symbols c, $ �∈ Γ serve as markers for the left and
right border of the work space, respectively, q0 ∈ Q is the initial state, k ∈ N+

is the size of the read/write window, and

δ : Q× PC(k) → Pfin(Q× ({MVR} ∪ PC≤(k−1)) ∪ {Restart,Accept})

is the transition function. Here PC(k) is the set of possible contents of the
read/write window of M , where PC(0) = {λ} and, for i ≥ 1,

PC(i) = (c · Γi−1) ∪ Γi ∪ (Γ≤i−1 · $) ∪ (c · Γ≤i−2 · $),

and

Γ≤i =
i⋃

j=0

Γj, and PC≤(k−1) =
k−1⋃
i=0

PC(i).

The function δ describes four different types of transition steps:

(1) A move-right step has the form (q′,MVR) ∈ δ(q, u) (also written as
(q, u, ) → (q′,MVR)), where q, q′ ∈ Q and u ∈ PC(k), u �= $. If M is in
state q and sees the string u in its read/write window, then this move-
right step causes M to shift the read/write window one position to the
right and to enter state q′. However, if the content u of the read/write
window is only the symbol $, then no move-right step is possible.

(2) A rewrite step has the form (q′, v) ∈ δ(q, u) (also written as (q, u) →
(q′, v)), where q, q′ ∈ Q, u ∈ PC(k), u �= $, and v ∈ PC≤(k−1) such
that |v| < |u|. It causes M to replace the content u of the read/write
window by the string v, and to enter state q′. Further, the read/write
window is placed immediately to the right of the string v. However,
some additional restrictions apply in that the border markers c and $
must not disappear from the tape nor that new occurrences of these
markers are created. Further, the read/write window must not move
across the right border marker $, that is, if the string u ends in $, then
so does the string v, and after performing the rewrite operation, the
read/write window is placed on the $-symbol.

(3) A restart step has the form Restart ∈ δ(q, u) (also written as (q, u) →
Restart), where q ∈ Q and u ∈ PC(k). It causesM to move its read/write
window to the left end of the tape, so that the first symbol it contains
is the left border marker c, and to reenter the initial state q0.

(4) An accept step has the form Accept ∈ δ(q, u) (also written as (q, u) →
Accept), where q ∈ Q and u ∈ PC(k). It causes M to halt and accept.
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For every q ∈ Q and u ∈ PC(k), if δ(q, u) = ∅, then M necessarily halts
in a corresponding situation, and we say that M rejects in this case. Further,
the letters in Γ� Σ are called auxiliary symbols.

A configuration of M is a string αqβ, where q ∈ Q, and either α = λ and
β ∈ {c} · Γ∗ · {$} or α ∈ {c} · Γ∗ and β ∈ Γ∗ · {$}; here q ∈ Q represents
the current state, αβ is the current content of the tape, and it is understood
that the read/write window contains the first k symbols of β or all of β when
|β| ≤ k. A restarting configuration is of the form q0cw$, where w ∈ Γ∗; if
w ∈ Σ∗, then q0cw$ is an initial configuration. Thus, initial configurations are
a particular type of restarting configurations. Further, we use Accept to denote
the accepting configurations, which are those configurations that M reaches
by executing an accept instruction. A configuration of the form αqβ such
that δ(q, β1) = ∅, where β1 is the current content of the read/write window,
is a rejecting configuration. A halting configuration is either an accepting or a
rejecting configuration. By �M we denote the single-step computation relation
that M induces on the set of configurations, and its reflexive and transitive
closure �∗

M is the computation relation of M 1.
In general, the automatonM is nondeterministic, that is, there can be two

or more instructions with the same left-hand side (q, u), and thus, there can
be more than one computation for an input word. If this is not the case, the
automaton is deterministic. We use the prefix det- to denote deterministic
classes of restarting automata.

Any finite computation of a restarting automaton M consists of certain
phases. A phase, called a cycle, starts in a restarting configuration, the head
moves along the tape performing move-right operations and a rewrite oper-
ation until a restart operation is performed and thus, a new restarting con-
figuration is reached. If no further restart operation is performed, any finite
computation necessarily finishes in a halting configuration – such a phase is
called a tail. We require thatM performs exactly one rewrite operation during
any cycle – thus each new phase starts on a shorter word than the previous
one. During a tail at most one rewrite operation may be executed. By �c

M we
denote the execution of a complete cycle, and �c∗

M is the reflexive transitive
closure of this relation. It can be seen as the rewrite relation that is realized
by M on the set of restarting configurations. Accordingly, an accepting com-
putation of M consists of a finite sequence of cycles that is followed by an
accepting tail computation. It can be described as

q0cw$ �c
M q0cw1$ �c

M q0cw2$ �c
M . . . �c

M q0cwn$ �∗
M Accept,

where w ∈ Σ∗ is the input word of M , and w1, w2, . . . , wn are the shorter tape
contents that occur in the restarting configurations during this computation.

1We often use the single-step computation relation to express the type of the step that
is performed. For example, �MVR denotes a move-right step.
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An input w ∈ Σ∗ is accepted by M , if there exists a computation of M
which starts with the initial configuration q0cw$, and which finally ends with
executing an accept instruction. The language L(M) accepted by M is the
set that consists of all input strings that are accepted by M , that is,

L(M) = {w ∈ Σ∗ | q0cw$ �∗
M Accept }.

Now we restate some basic facts about computations of restarting au-
tomata. As mentioned in Section 1, a restarting automaton verifies the syn-
tactical correctness of sentences through sequences of local simplifications.
During the process of simplifying a given sentence, each step preserves the
correctness or incorrectness of the sentence. Formally, error and correctness
preserving properties are described as follows (see, e.g., [Ott06]).

Proposition 3.1.1 (Error Preserving Property).
Let M = (Q,Σ,Γ, c, $, q0, k, δ) be a restarting automaton, and let u, v be
words over its input alphabet Σ. If q0cu$ �c∗

M q0cv$ holds and u /∈ L(M), then
v /∈ L(M), either.

Proposition 3.1.2 (Correctness Preserving Property).
Let M = (Q,Σ,Γ, c, $, q0, k, δ) be a restarting automaton, and let u, v be
words over its input alphabet Σ. If q0cu$ �c∗

M q0cv$ is an initial segment of an
accepting computation of M , then v ∈ L(M).

Now we continue with a simple example of a restarting automaton taken
from [Ott06].

Example 3.1.1. Let M1 = (Q,Σ,Γ, c, $, q0, k, δ) be the RRWW-automaton
that is defined by taking Q = {q0, qc, qd, qe}, Γ = Σ = {a, b, c, d}, and k = 3,
where δ contains the following transitions:

t1 : (q0, cc$) → Accept, t10 : (qd, bbb) → (qd,MVR),
t2 : (q0, cd$) → Accept, t11 : (qd, bbd) → (qd,MVR),
t3 : (q0, cab) → (q0,MVR), t12 : (qd, bd$) → (qd,MVR),
t4 : (q0, caa) → (q0,MVR), t13 : (q0, abc) → (qe, c),
t5 : (q0, aab) → (q0,MVR), t14 : (q0, abb) → (qc, b),
t6 : (q0, aaa) → (q0,MVR), t15 : (q0, abb) → (qd, λ),
t7 : (qc, bbb) → (qc,MVR), t16 : (qc, c$) → Restart,
t8 : (qc, bbc) → (qc,MVR), t17 : (qd, d$) → Restart,
t9 : (qc, bc$) → (qc,MVR), t18 : (qe, $) → Restart.

For example, M1 can execute the following computations on the input
aabbc:

q0caabbc$ �M1 cq0aabbc$ �M1 caq0abbc$ �M1

{
caqdc$,
cabqcc$.
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The configuration caqdc$ does not admit any transition step anymore, that is,
M1 halts without accepting. However, from the configuration cabqcc$, M1 can
continue as follows:

cabqcc$ �M1 q0cabc$ �M1 cq0abc$ �M1 ccqe$ �M1 q0cc$ �M1 Accept.

Accordingly, M1 accepts on input aabbc. It is easily seen that the language
L(M1) that is accepted by M1 is

L(M1) = { anbnc | n ≥ 0 } ∪ { anb2nd | n ≥ 0 }.
Actually, the language L(M1) is the context-free language that is presented

in Example 2.1.2, where it is accepted by the PDA P1. In Section 3.1.2 we
will give some characterizations of CFL in terms of restarting automata. By
the following lemma we can obtain a simple way to describe the behaviour of
restarting automata.

Lemma 3.1.1 ([Ott06]). An RRWW-automaton is equivalent to an RRWW-
automaton that makes an accept or restart step only when it sees the right
border marker $ in its read/write window.

This lemma indicates that in each cycle and in the tail of each computa-
tion, the read/write window moves all the way to the right before a restart
is executed, or before the automaton halts and accepts. Therefore, for an
RRWW-automaton, each cycle (or the tail of a computation) that contains
a rewrite step can be divided into three parts. The first one consists of the
move-right steps that are performed before a rewrite step is made, and the
second one is the rewrite step that is executed in the current cycle (or tail
computation). The third part comprises the move-right steps that are per-
formed before the automaton restarts (or halts). Accordingly, the transition
function of an RRWW-automaton can also be described through a sequence
of so-called meta-instructions [NO01] of the form (c ·E1, u→ v, E2 · $), where
E1 and E2 are regular languages, called the regular constraints of this instruc-
tion, and u and v are strings such that |v| < |u|. The rule u → v stands
for a rewrite step of the RRWW-automaton considered. On trying to execute
this meta-instruction this RRWW-automaton will get stuck (and so reject)
starting from the configuration q0cw$, if w does not admit a factorization of
the form w = w1uw2 such that w1 ∈ E1, w2 ∈ E2. On the other hand, if
w does have a factorization of this form, then one such factorization is cho-
sen nondeterministically, and q0cw$ is transformed into q0cw1vw2$. In order
to describe the tail of an accepting computation we use meta-instructions of
the form (c · E · $,Accept), where the strings from the regular language E
are accepted by the RRWW-automaton in tail computations. Now we illus-
trate this concept by describing the RRWW-automaton from Example 3.1.1
by meta-instructions.
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Example 3.1.2. Let M1 be the RRWW-automaton on the input alphabet
{a, b, c, d} and without auxiliary symbols that is described by the following
sequence of meta-instructions:

(1) (c · a∗, ab→ λ, b∗ · c$), (3) (c · c · $,Accept),
(2) (c · a∗, abb→ λ, b∗ · d$), (4) (c · d · $,Accept),

The meta-instruction (1) describes a cycle of M1, in which M1 first moves
right across the prefix an, then it deletes the factor ab and performs move-
right steps on b-symbols, and finally it restarts on seeing the suffix c$. The
meta-instruction (2) indicates that M1 removes the factor abb, which means
that M1 guesses that the suffix of the input word is a d-symbol, then it moves
to the right end of the tape to verify its guess. Further, it is easily seen that
the meta-instructions (3) and (4) correspond to the accept transitions t1 and
t2 of the transition function δ in Example 3.1.1, respectively. Hence, the set
of meta-instructions above can be transformed into the transition function δ
in Example 3.1.1, that is, L(M1) = { anbnc | n ≥ 0 } ∪ { anb2nd | n ≥ 0 }.

This way of describing an RRWW-automaton corresponds to the charac-
terization of the class L(RRWW) by certain infinite prefix-rewriting systems
as given in [NO00a]. We close this section with the following definition.

Definition 3.1.2. Let M1 = (Q1,Σ1,Γ1, c, $, q0, k, δ1) be a restarting automa-
ton. A restarting automaton M2 = (Q2,Σ2,Γ2, c, $, q0, k, δ2) is a subautoma-
ton of M1 if and only if

- Q2 ⊆ Q1,

- Σ2 ⊆ Σ1,

- Γ2 ⊆ Γ1,

- and the transition function δ2 is the restriction of δ1 to

Q2 × PC(k) → Pfin(Q2 × ({MVR} ∪ PC≤(k−1)) ∪ {Restart,Accept}),

where PC(k) is the set of possible contents of the read/write window of
M2, PC(0) = {λ} and, for i ≥ 1,

PC(i) = (c · Γi−1
2 ) ∪ Γi

2 ∪ (Γ≤i−1
2 · $) ∪ (c · Γ≤i−2

2 · $),

and

Γ≤i
2 =

i⋃
j=0

Γj
2, and PC≤(k−1) =

k−1⋃
i=0

PC(i).
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3.1.2 Some Variants of Restarting Automata

In this section we introduce some restricted types of restarting automata that
we use in the forthcoming chapters. A restarting automaton is called an RWW-
automaton if it makes a restart immediately after performing a rewrite opera-
tion. In particular, this means that it cannot perform a rewrite step during the
tail of a computation. An RRWW-automaton is called an RRW-automaton if
its tape alphabet Γ coincides with its input alphabet Σ, that is, if no auxiliary
symbols are available. Further, for a word u = a1a2 . . . an ∈ Σ∗, a scattered
subword of u is a word v = ai1ai2 . . . ail , where 1 ≤ i1 < i2 < . . . < il ≤ n,
and |v| < |u|. An RRWW-automaton is an RR-automaton if it is an RRW-
automaton such that, for each rewrite transition (q, u) → (q′, v), v is a scat-
tered subword of u. Actually, the restarting automaton M1 given in Example
3.1.1 is an RR-automaton. Analogously, we obtain the RW-automaton and the
R-automaton from the RWW-automaton. For a type X of restarting automata,
let L(X) denote the class of languages that are accepted by the restarting au-
tomata of type X. An overview on various types of restarting automata is
given by [Ott06]. We summarize the inclusion relations between the classes
of languages that are computed by the various types of restarting automata
in Figure 3.1. Note that in Figure 3.1, L(det-RWW) = L(det-RRWW), while
it is still open whether or not the inclusion L(RWW) ⊆ L(RRWW) is proper,
and all other inclusions are proper. In addition, note that it is just a rough
overview, and some details on the inclusion relations between these language
classes are not shown in this figure. For example, the unconnected classes
L(RW) and L(RR) are incomparable with respect to inclusion, and the in-
clusion relation between the unconnected classes L(RWW) and L(RRW) is
unknown. Further details on these inclusion relations can be found in [Ott06].

Concerning the class of Church-Rosser languages the following character-
ization has been obtained.

Proposition 3.1.3 ([NO00b]). CRL = L(det-RWW) = L(det-RRWW).

Further, some closure properties of the language classes L(RWW) and
L(RRWW) have been shown in earlier works.

Proposition 3.1.4 ([JLNO04]). The language classes L(RWW) and L(RRWW)
are closed under union, concatenation, and reversal, but not under projection.

Concerning the class of growing context-sensitive languages we give the
following inclusion results.

Proposition 3.1.5 ([JLNO04]). GCSL � L(RWW) ⊆ L(RRWW).
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L(R)

L(RWW)

L(RRWW)

L(det-RRWW)

L(RR)

L(det-RWW)

L(det-RR)

L(det-R)

L(RW)

L(det-RW)

L(RRW)

L(det-RRW)

Figure 3.1: Hierarchy of classes of languages that are computed by the various
types of restarting automata. An arrow denotes an inclusion.

Finally, we give an upper bound for the expressive power of RRWW-
automata. On an input word of length n, a restarting automaton can execute
at most n cycles. Thus, the following result can be established, where NP
and P denote the well-known complexity classes, and DCSL denotes the class
of deterministic context-sensitive languages. Note that the properness of the
inclusion DCSL ⊆ CSL is still open.

Proposition 3.1.6 ([Ott06]).

(1) L(RRWW) ⊆ NP ∩ CSL.
(2) L(det-RRWW) ⊆ P ∩ DCSL.

Monotone Restarting Automata

Next we restate the notion of monotonicity for restarting automata that is
introduced in [JMPV97]. Let C = αqβ be a rewrite configuration of an
RRWW-automaton M , that is, a configuration in which a rewrite step can be
applied. Then |β| is called the right distance of C, which is denoted by Dr(C).
A sequence of rewrite configurations S = (C1, C2, . . . , Cn) is called monotone
if Dr(C1) ≥ Dr(C2) ≥ . . . ≥ Dr(Cn), that is, if the distance of the place of
rewriting to the right end of the tape does not increase from one rewrite step
to the next. A computation of an RRWW-automaton M is called monotone
if the sequence of rewrite configurations that is obtained from the cycles of
that computation is monotone. Observe that here the rewrite configuration
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CFL L(mon-RWW) L(mon-RRWW)

L(mon-RW)

��

�� L(mon-RRW)

��

L(mon-R)

��

�� L(mon-RR)

��

DCFL L(det-mon-R(R)(W)(W))

��

Figure 3.2: Hierarchy of classes of languages that are computed by the various
types of monotone restarting automata. An arrow denotes a proper inclusion,
and the equalities are denoted by =.

is not taken into account that corresponds to the possible rewrite step that
is executed in the tail of the computation considered. Finally, an RRWW-
automaton M is called monotone if all its computations that start with an
initial configuration are monotone. We use the prefix mon- to denote mono-
tone types of restarting automata.

It is well-known that the classes L(mon-RWW) and L(mon-RRWW) coin-
cide with the class CFL of context-free languages.

Proposition 3.1.7 ([JMPV99]). CFL = L(mon-RRWW) = L(mon-RWW).

For the monotone restarting automata of other types, the inclusion rela-
tions are the same as in the nonmonotone case, and the classes of languages
that are accepted by these restarting automata are strictly included in the class
CFL. In particular, the class DCFL of deterministic context-free languages is a
proper subset of the class of languages that are accepted by mon-R-automata,
i.e., DCFL � L(mon-R).

Now we come to deterministic monotone restarting automata. In [JMPV97]
it is proved that the class L(det-mon-R) coincide with the class DCFL . Fur-
ther, it is shown in [JMPV99] that the class DCFL corresponds to the class
L(det-mon-RRWW). This yields the following result.

Proposition 3.1.8 ([JMPV97, JMPV99]). For all types X ∈ {R,RR,RW
RRW,RWW,RRWW}, L(det-mon-X) = DCFL.

Finally, from the results obtained in earlier works (e.g., [JMPV97, MPJV97,
JMPV98, JMPV99]), we summarize the inclusion relations between the classes
of languages that are accepted by monotone restarting automata of various
types in the diagram in Figure 3.2.
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Non-Forgetting Restarting Automata

The purpose of this section is to introduce another variant of restarting au-
tomata, so-called non-forgetting restarting automata, and to recall some facts
about the expressive power of them. A restarting automatonM is called non-
forgetting, if its restart steps are combined with a change of state just like the
move-right and rewrite operations [MS04]. The prefix nf- is used to denote
types of non-forgetting restarting automata.

Here we will restrict our attention to monotone non-forgetting restarting
automata. From these earlier works such as [MS04, MO06, MO11], we know
that the inclusion relations between the classes of languages accepted by non-
deterministic monotone non-forgetting restarting automata are the same as
in the forgetting case, and that also the class CFL coincides with the classes
L(mon-nf-RWW) and L(mon-nf-RRWW), that is,

L(mon-nf-RRWW) = L(mon-nf-RWW) = CFL.

In addition, it is easily seen that

L(mon-R) � L(mon-nf-R)

and
L(mon-RW) � L(mon-nf-RW).

For the above proper inclusions, we consider the language

L(M1) = { anbnc | n ≥ 0 } ∪ { anb2nd | n ≥ 0 }
that is given in Example 3.1.1. It is well-known that L(M1) does not belong to
the language class L(RW) (see, e.g., [JMPV99]), while it can be accepted by a
mon-nf-R-automaton M that proceeds as follows. Given an input word w, M
first guesses the suffix of w and stores this guess in its finite control. Then, M
moves to the bound between a- and b-symbols, and performs a corresponding
rewrite step according to its guess. For example, if M guesses that the suffix
is c, then it removes the factor ab. AsM is non-forgetting, after a restart step
the information in the finite control is not lost. Finally, on seeing the suffix
M can verify its guess.

However, the class DCFL can only be characterized by deterministic mono-
tone non-forgetting restarting automata of the types with a single R, that is,

L(det-mon-nf-R(W)(W)) = DCFL,

and it is strictly included in the class of languages that are accepted by the
automata of the types with double Rs [MO06], that is,

DCFL � L(det-mon-nf-RR).
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CFL

L(det-mon-nf-RRWW)

��

L(det-mon-nf-RRW)

��

L(det-mon-nf-RR)

��

DCFL L(det-mon-nf-R(W)(W))

��

Figure 3.3: Hierarchy of classes of languages that are computed by the vari-
ous types of deterministic monotone non-forgetting restarting automata. An
arrow denotes a proper inclusion, and the equalities are denoted by =.

Further, just like in the nondeterministic case, the proper inclusions

L(det-mon-nf-RR) � L(det-mon-nf-RRW) � L(det-mon-nf-RRWW)

have been shown in [MO06], and the class CFL strictly contains the class
L(det-mon-nf-RRWW). Finally, we summarize inclusion relations between
these above language classes in terms of deterministic monotone non-forgetting
restarting automata in Figure 3.3.

Stateless Restarting Automata

We close this section with the notion of stateless restarting automata, which
is almost the weakest variant of restarting automaton (see, e.g., [KMO10a,
KMO10b]). A restarting automatonM = (Q,Σ,Γ, c, $, q0, k, δ) is called state-
less, if Q = {q0}. Thus, M can simply be written as M = (Σ,Γ, c, $, k, δ).
We use the prefix stl- to denote stateless types of restarting automata. It is
shown in [NO12] that stateless deterministic R-automata of window size one
can only accept some regular languages, that is,

L(stl-det-R(1)) � REG,

and that those of window size two can only accept some deterministic context-
free languages, that is,

L(stl-det-R(2)) � DCFL,

while deterministic stateless RWW-automata and monotone stateless RWW-
automata are as powerful as the nonstateless automata of the corresponding
types. We summarize the above inclusion results in Figure 3.4.
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CRL L(stl-det-RWW) CFL L(stl-mon-RWW)

L(stl-det-R(2))
��

��
DCFL

��

L(stl-det-R(1))
��

��
REG

��

Figure 3.4: Hierarchy of classes of languages that are computed by the various
types of stateless restarting automata. An arrow denotes a proper inclusion,
and the equalities are denoted by =.

3.2 Monoids and Semirings

We already mentioned that the weight of a transition of a weighted restarting
automaton is an element of some semiring. Thus, in this section we recall the
notions of monoid and semiring and present some examples of them.

Definition 3.2.1 ([DK09]). A monoid is defined as a triple M = (M, ·, 1),
where

• M is a non-empty set,

• · : M ×M → M is an associative binary operation, that is, (a · b) · c =
a · (b · c) for all a, b, c ∈M , and

• 1 is a neutral element for ·, that is, 1 · a = a · 1 = a for all a ∈M .

The monoid M is called commutative if a · b = b · a holds for all a, b ∈M .
It is called ordered if there exists a partial order ≤ on M that is compatible
with the operation ·, that is, if a ≤ b, then (a · c) ≤ (b · c) and (c · a) ≤ (c · b)
for all a, b, c ∈ M . Finally, it is called linearly ordered if it is ordered with
respect to a linear order.

Now we give some examples of monoids. Let Z be the set of all integers, let
Q be the set of all rational numbers, and let R be the set of all real numbers.
Obviously, (N,+, 0) and (N, ·, 1) are commutative monoids that are linearly
ordered, while the commutative monoids (Z, ·, 1), (Q, ·, 1), and (R, ·, 1) are not
ordered with respect to the natural order relation ≤, as in general, a ≤ b does
not imply a · c ≤ b · c. Further, let N∞ = N∪ {∞} and N = N∪ {−∞}. Then
(N∞,min,∞) and (N,max,−∞) are commutative monoids that are linearly
ordered. For some alphabet Σ, (Σ∗, ·, λ) is a monoid, the free monoid gener-
ated by Σ. It is not commutative unless |Σ| = 1 holds. It is linearly ordered
with respect to the length-lexicographical ordering (see, e.g., [BO93]). Fur-
ther, (P(S),∪, ∅), (P(S),∩, S), and (Pfin(S),∪, ∅) are commutative monoids
for any set S. Finally, (P(Σ∗), ·, {λ}) and (Pfin(Σ

∗), ·, {λ}) are monoids, where
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for some sets U and V , U · V = {u · v | u ∈ U, v ∈ V } denotes the extension
of the concatenation operation from words to languages. These monoids are
ordered with respect to the inclusion relation, which is not a linear order.

Definition 3.2.2 ([DK09]). A semiring S = (S,+, ·, 0, 1) is a non-empty set
S together with two binary operations + : S × S → S and · : S × S → S and
two elements 0, 1 ∈ S such that the following conditions are satisfied:

1. (S,+, 0) is a commutative monoid,

2. (S, ·, 1) is a monoid,

3. the distributive laws

(a+ b) · c = (a · c) + (b · c) and c · (a+ b) = (c · a) + (c · b)
hold for all a, b, c ∈ S, and

4. 0 · a = a · 0 = 0 holds for all a ∈ S.

The semiring S is called commutative if (S, ·, 1) is a commutative monoid.
It is (linearly) ordered with respect to an order ≤, if (S,+, 0) is a (linearly)
ordered monoid with respect to ≤ and if multiplication by elements s ≥ 0
preserves the order, that is, if s ≥ 0 and a ≤ b, then (s · a) ≤ (s · b) and
(a · s) ≤ (b · s).

Obviously, (N,+, ·, 0, 1) and (R,+, ·, 0, 1) as well as (B,∨,∧, 0, 1), where
B = {0, 1}, are commutative semirings that are linearly ordered with re-
spect to the natural order. For Z∞ = Z ∪ {∞} and Z = Z ∪ {−∞},
(N∞,min,+,∞, 0) and (Z∞,min,+,∞, 0) are the tropical or min-plus semir-
ings, and (N,max,+,−∞, 0) and (Z,max,+,−∞, 0) are the arctic or max-
plus semirings, which are also commutative and linearly ordered under the
natural order. Further,

(P(Σ∗),∪, ·, ∅, {λ}) and (Pfin(Σ
∗),∪, ·, ∅, {λ})

are semirings that are not commutative unless |Σ| = 1, and the same holds
for

(REG(Σ),∪, ·, ∅, {λ}) and (CFL(Σ),∪, ·, ∅, {λ}),
where REG(Σ) and CFL(Σ) denote the classes of regular and context-free
languages over Σ. These semirings are ordered with respect to the inclu-
sion relation. More information on and further examples of semirings can
be found in [Gol99]. Applications of semirings can be found in many areas
such as IT-security (see, e.g., [AAM07, Mon02]), and network analysis (see,
e.g., [CB14, PB16]). We complete this subsection by restating the notions of
weighted automaton and recognizable function in short.
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Definition 3.2.3 ([Sb61]). Let S = (S,+, ·, 0, 1) be a semiring, and let Σ
be a finite alphabet. A weighted automaton is given through a four-tuple
A = (Q, in, ω, out), where

• Q is a finite set of states,

• in : Q→ S assigns an entrance weight to each state,

• out : Q→ S assigns an exit weight to each state, and

• ω : Q × Σ × Q → S is a weight function that assigns a weight to each
possible transition.

A path in A is any sequence

P = (q0, a1, q1, a2, q2, . . . , an, qn),

where q0, q1, . . . , qn ∈ Q and a1, a2, . . . , an ∈ Σ, and the word a1a2 . . . an ∈ Σ∗

is called its label. The run weight of P is the product

rweight(P ) =
∏

0≤i<n

ω(qi, ai+1, qi+1),

where rweight((q0)) = 1 is taken. Note that if n = 0, then rweight(P ) = 1.
Further, the weight of P is defined as

ω(P ) = in(q0) · rweight(P ) · out(qn).
Finally, let Path(w) denote the set of all paths in A that have label w. Then
the behavior of A is the function ||A|| : Σ∗ → S that is defined by

||A||(w) =
∑

P∈Path(w)

ω(P )

for all w ∈ Σ∗. The set of recognizable functions over S and Σ is the set
SREC〈〈Σ∗〉〉 of all functions that are the behavior of some weighted automaton
over S.

More information on these notions can be found in [DKV09].

3.3 Weighted Restarting Automata

The aim of this section is to introduce the notion of weighted restarting au-
tomaton that is the central notion of this work.

Just as finite automata, given an input word w ∈ Σ∗, a restarting au-
tomaton M either accepts or rejects. Therefore, such an automaton can be
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seen as computing a Boolean function. But in case of acceptance, one may
be interested in some quantitative aspects of a restarting automaton, such as
the number of accepting computations of M on input w, or the least number
of steps (or cycles) in such an accepting computation, or the minimal number
of auxiliary symbols that are used during an accepting computation.

In the 1960s the notion of weighted finite automaton was introduced in
[Sb61]. Such an automaton consists of a finite automaton A and a weight
function ω that associates elements of a semiring S to the transitions of A.
Now following the same fundamental idea, we define the notion of weighted
restarting automaton [OW16], in order to answer quantitative questions for a
restarting automaton.

Definition 3.3.1.

(a) Let M = (Q,Σ,Γ, c, $, q0, k, δ) be a restarting automaton. A weight
function ω from the transitions of M into a semiring S = (S,+, ·, 0, 1)
is a function ω : δ → S, that is, ω assigns an element of S as a weight
to each transition of M .

(b) A weighted restarting automaton of type X (wX-automaton for short)
is defined as a pair M = (M,ω), where M is a restarting automaton
of type X, and ω is a weight function from the transitions of M into a
semiring S.

(c) Let M = (M,ω) be a weighted restarting automaton, where ω is a weight
function from the transitions of M into the semiring S = (S,+, ·, 0, 1).
If c1 and c2 are configurations of M such that c1 �M c2 holds, then there
exists a transition t ∈ δ such that c2 is obtained from c1 by performing
the transition t. By ω(t) we denote the weight that is associated with
this computational step of M .

If the transitions t1, t2, . . . , tn are used during a computation C in this
order, then the weight of this computation C is defined as ω(C) = ω(t1)·
ω(t2) · · · · · ω(tn) ∈ S. Finally, for each input word w ∈ Σ∗, let CM(w)
be the set of all accepting computations of M on input w. Then

fM
ω (w) =

∑
C∈CM (w)

ω(C)

is the element of S that is associated to w by M, that is, fM
ω is a function

from Σ∗ into S.

Observe that each computation C of M is of finite length, and so ω(C)
is defined as a finite product in S. Further, for each w ∈ Σ∗, the set CM(w)
of accepting computations of M on input w is also finite, which implies that
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fM
ω (w) is obtained as a finite sum in S. These observations imply that indeed
fM
ω is a well defined function from Σ∗ into S. If w �∈ L(M), then CM(w) is
empty, which means that fM

ω (w) = 0 holds.
We close this section with some examples of weighted restarting automata.

The first example is obtained from the RR-automaton M1 of Example 3.1.1
by combining it with different weight functions. In the following examples,
we will see that by using different semirings and weight functions, various
quantitative aspects of M1 can be studied.

Example 3.3.1. Let M1 = (Q,Σ,Γ, c, $, q0, k, δ) be the RR-automaton from
Example 3.1.1 that accepts the language L(M1) = L1 = { anbnc | n ≥ 0 } ∪
{ anb2nd | n ≥ 0 }.

(a) Let B = (B,∨,∧, 0, 1) be the Boolean semiring, and let ω1 be the weight
function that assigns weight 1 to each transition of M1. Then ω1(C) = 1
for each accepting computation C of M1, and

fM1
ω1

(w) =

{
1, for w ∈ L1

0, for w �∈ L1

}
,

that is, fM1
ω1

: {a, b, c, d}∗ → B is simply the characteristic function of
the language L1.

(b) Let N∞ = (N∞,min,+,∞, 0) be the tropical semiring, and let ω2 be the
weight function that assigns weight 1 to each restart transition of M1,
and that assigns weight 0 to all other transitions of M1. Then ω2(C) =
|C|rs for each computation C of M1, where |C|rs denotes the number
of restart steps in C. Although M1 is nondeterministic (see its rewrite
transitions), it has only a single accepting computation C(w) for each
word w ∈ L1. Accordingly,

fM1
ω2

(w) =

{ |C(w)|rs, for w ∈ L1

∞, for w �∈ L1

}
.

In the same way, we can also define a weight function ω′
2 such that the

function fM1

ω′
2
(w) determines the number of move-right steps or rewrite

steps during the computation on an input w.

(c) Let (Pfin(Δ
∗),∪, ·, ∅, {λ}) be the semiring of finite languages over the

finite alphabet Δ = {c, d}, and let ω3 be the weight function that assigns
the set {c} to the transitions t16 : (qc, c$) → Restart and t18 : (qe, $) →
Restart, that assigns the set {dd} to t17 : (qd, d$) → Restart, and that
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assigns the set {λ} to all other transitions. Accordingly,

fM1
ω3

(w) =

⎧⎨
⎩

{cn}, for w = anbnc
{d2n}, for w = anb2nd
∅, otherwise

⎫⎬
⎭ .

Actually, the set of pairs (anbnc, cn) and (anb2nd, d2n) can be viewed as
the relation that is computated by the weighted restarting automaton
(M1, ω3). Hence, using weight functions of this form, the restarting
transducers that are introduced in [Hun13] can be simulated. In Chap-
ter 5 we will describe the classes of relations that are computated by
restarting transducers and weighted restarting automata in detail.

(d) Let (N,max,+,−∞, 0) be the arctic semiring. Let ω4 be the weight
function that assigns weight 2 to the transition t13 : (q0, abc) → (qe, c)
and the transition t14 : (q0, abb) → (qc, b), weight 3 to the transition
t15 : (q0, abb) → (qd, λ), and weight 0 to all other transitions. Then
ω4(C) is the number of symbols that are deleted during the computa-
tion C, and accordingly,

fM1
ω4

(w) =

⎧⎨
⎩

2n, for w = anbnc,
3n, for w = anb2nd,
−∞, for w �∈ L1.

Finally, we give an example of a nondeterministic wRWW-automaton.

Example 3.3.2. Let L2 = {w1w
R
1 w2w

R
2 . . . wnw

R
n | n ≥ 1, wi ∈ {a, b}+, |wi| ≡

0 mod 2, i = 1, 2, . . . , n }, and let M2 = (Q,Σ,Γ, c, $, q0, k, δ) be an RWW-
automaton, where Q = {q0, qr}, Σ = {a, b}, Γ = {a, b,#}∪{ [c, d] | c, d ∈ Σ },
k = 4, and the transition function δ is defined as follows, where c, d, e, f, g, h, x ∈
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Σ:
(1) (q0, ccde) → (qr, c[c, d]e),
(2) (q0, c[c, d]ef) → (qr, c[c, d][e, f ]),
(3) (q0, c[c, d]dc) → (qr, c#),
(4) (q0, c#cd) → (qr, ccd),
(5) (q0, c#$) → Accept,
(6) (q0, c[c, d][e, f ]g) → (q0,MVR),
(7) (q0, c[c, d][e, f ][g, h]) → (q0,MVR),
(8) (q0, [c, d][e, f ]gh) → (qr, [c, d][e, f ][g, h]),
(9) (q0, [c, d][e, f ]fe) → (qr, [c, d]#),
(10) (q0, c[c, d]#d) → (q0,MVR),
(11) (q0, [e, f ][c, d]#d) → (q0,MVR),
(12) (q0, [c, d]#dc) → (qr,#),
(13) (q0, c[c, d][e, f ]#) → (q0,MVR),
(14) (q0, [c, d][e, f ][g, h]x) → (q0,MVR),
(15) (q0, [c, d][e, f ][g, h]#) → (q0,MVR),
(16) (qr, z) → Restart for all z ∈ Γ4 ∪ Γ≤3 · {$}.

For example, on the input word aabaabaaabba M2 can execute the following
computation:

q0caabaabaaabba$ �2
(1,16) q0c[a, a]baabaaabba$

�2
(2,16) q0c[a, a][b, a]abaaabba$

�(6) cq0[a, a][b, a]abaaabba$
�2
(9,16) q0c[a, a]#aaabba$

�(10) cq0[a, a]#aaabba$
�2
(12,16) q0c#abba$

�2
(4,16) q0cabba$

�2
(1,16) q0c[a, b]ba$

�2
(3,16) q0c#$

�(5) Accept.

It is easily seen that L(M2) = L2 holds, and that on input w ∈ Σ+, M2

has an accepting computation for each factorization of w of the form w =
w1w

R
1 w2w

R
2 . . . wnw

R
n such that wi ∈ Σ+ and |wi| ≡ 0 mod 2 for all i =

1, . . . , n.

(a) Let N∞ = (N∞,min,+,∞, 0) be the tropical semiring, and let ω1 be the
weight function that assigns weight 1 to each transition of the groups (3)
and (9) of M2, and that assigns weight 0 to all other transitions of M2.
Then, for each computation C of M2, ω1(C) is the number of times
the symbol # is introduced during C, and hence, if C is an accepting
computation on input w, then this is the number n of factors wiw

R
i in
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the factorization of w that is guessed in the course of this computation.
Accordingly,

fM2
ω1

(w) =

{
minimal number of factors of w, for w ∈ L2

∞, for w �∈ L2

}
.

(b) Let (Pfin(Γ
∗),∪, ·, ∅, {λ}) be the semiring of finite languages over the fi-

nite alphabet Γ = {a, b,#}, and let ω2 be a weight function that assigns
the set {cd} to the transitions of group (1), {ef} to the transitions of
group (2), and {gh} to the transitions of group (8), that assigns the set
{#} to the transitions of the groups (3) and (9), and that assigns the
set {λ} to all other transitions. It can now be checked that ω2(C) =
{aaba#ab#} for the computation C on input w = aabaabaaabba pre-
sented above. It follows that

fM2
ω2

(w) = {w1# . . .#wn# | w = w1w
R
1 . . . wnw

R
n },

that is, fM2
ω2

(w) is the set of possible factorizations that witness that w
belongs to L2.
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Chapter 4

Functions Computed by
Weighted Restarting Automata

We already mentioned in Chapter 3 that each weighted restarting automaton
represents a function from the set of words over its input alphabet into a
semiring. The purpose of this chapter is to study the classes of functions that
are induced by weighted restarting automata. This chapter consists of four
sections, where the first one gives some basic definitions and some examples.
Section two and three present the results on the syntactic and semantic prop-
erties of functions induced by weighted restarting automata such as growth
rates and closure properties. Finally, this chapter is closed with a summary
and some problems for future work.

4.1 Definitions and Examples

For a type X of restarting automaton, we are interested in the class of functions
that are induced by wX-automata. Accordingly, we introduce the following
notion.

Definition 4.1.1 ([OW16]). For a type X of restarting automata, a finite
alphabet Σ, and a semiring S, let F(X,Σ, S) denote the set of all functions of
the form fM

ω : Σ∗ → S, where M is a restarting automaton of type X with
input alphabet Σ, and ω is a weight function from the transitions of M into
the semiring S.

In Section 3.3 some examples of functions induced by weighted restart-
ing automaton have been presented. We have seen that weighted restarting
automata can be used to express interesting quantitative aspects of compu-
tations and of languages of restarting automata. Here we give some further
examples which involve some complex languages.
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Example 4.1.1. First, we will construct an RRWW-automaton that accepts
all so-called non-primitive words [DHI+93] over some alphabet Σ. Recall that
a word is called non-primitive if it can be written as w = un for some word u ∈
Σ+ and some integer n ≥ 2. Let M1 = (Q,Σ,Γ, c, $, q0, 3, δ) be the RRWW-
automaton that executes the following computation given a word w ∈ Σ+ as
input:

1. Repeatedly replace a factor ab of length 2 by rewriting it into an auxiliay
symbol of the form [a, b, 1] for a, b ∈ Σ, proceeding from right to left.
This process is ended by replacing the prefix cab by the word c[a, b, 1].
Thus, we have the initial computation

q0cw$ �c∗
M1

q0c[a, b, 1]w1[a, b, 1]w2 . . . [a, b, 1]wn$,

where n ≥ 2 and w = abw1abw2 . . . abwn.

2. Check whether all marked off blocks coincide, that is, w1 = w2 = . . . =
wn. This can be done by first rewriting [a, b, 1]c into [b, c, 2] from left to
right, and then by rewriting [b, c, 2]d into [c, d, 1], where these two stages
are repeated alternatingly. In the affirmative, halt and accept, and if a
mismatch is found, halt and reject.

It is easily seen that M1 accepts all non-primitive words, that is,

L(M1) = {w | w = un for some u ∈ Σ+ and n ≥ 2}.
Let S = (N,+, ·, 0, 1), and let ω1 : δ → S be the weight function that assigns

the weight 1 to all transitions of M1. Then, given an input word of the form
w = un, the weight of an accepting computation is 1, and the value of fM1

ω1
(w)

coincides with the number of admissible factorizations of w. Obviously, if w
is primitive, then fM1

ω1
(w) = 0.

Note that it is still an open problem whether the complement of the lan-
guage L(M1) is a context-free language. In the following example we present
a wRRWW-automaton that on input a unary word an, yields the set of all
non-trivial divisors of n.

Example 4.1.2. Let M2 = (Q,Σ,Γ, c, $, q0, 3, δ) be the RRWW-automaton
that executes the following computation given a word w = an as input:

1. Nondeterministically place a marker # on the tape by rewriting aa into
#, proceeding from right to left. This process is repeated all the way
and ends by replacing caa by the word c&. Thus, we have the initial
computation:

q0cw$ �c∗
M2

q0c&a
r1#ar2 . . .#ark$,

where k ≥ 2 and Σk
i=1(ri + 2) = n.
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2. Again check whether all marked off blocks coincide, that is, r1 = r2 =
. . . = rk. Using the trick from the previous example, this can be done by
first rewriting &a into &1 and #a into #1 from left to right, by rewriting
&1a into &2 and #1a into #2, and finally by rewriting &2a into &1 and
#2a into #1, where the latter two stages are repeated alternatingly. In
the affirmative case, halt and accept, and in the negative case, halt and
reject.

It is easily seen thatM2 accepts on input a unary word an, if n has a factor-
ization n = p · r for some p, r ≥ 2, that is, L(M2) = {an | n is not a prime}.
In fact, M2 has an accepting computation for each such factorization.

If A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bl} are two sets of integers,
i.e., |A| = k and |B| = l, then the sum of A and B is defined as

A+B = { ai + bj | 1 ≤ i ≤ k, 1 ≤ j ≤ l }.

Further, it is easily seen that S = (Pfin(N),∪,+, ∅, {0}) is a semiring, and let
ω2 : δ → S be a weight function that assigns the set {2} to the transition that
rewrites caa into c&, the set {1} to all rewrite transitions that write one of the
symbol &1 and &2, and that assigns the set {0} to all other transitions. Then
the weight of an accepting computation for an is a set containing only one
integer that is just the factor p of the chosen factorization p · r = n. Hence,
fM2
ω2

(an) = {p ∈ N | p ≥ 2 and ∃r ∈ N, r ≥ 2 : p · r = n}.
We continue with the inclusion relation between the classes SREC〈〈Σ∗〉〉

and F(X,Σ, S). To do this we recall the following notion.

Definition 4.1.2 ([Kir09]). For a commutative semiring S = (S,+, ·, 0, 1), if
s+ t �= 0 for all s, t ∈ S, then we say that S is zero-sum free.

Proposition 4.1.1 ([OW16]). For each semiring S, each alphabet Σ, and
each type of restarting automaton X,

SREC〈〈Σ∗〉〉 ⊆ F(X,Σ, S).

If S is a commutative semiring that is zero-sum free, then this inclusion is
proper.

Proof. Let A = (Q, in, ω, out) be a weighted automaton with input alphabet
Σ over the semiring S. To prove the above inclusion, we first construct a
wR-automaton M = (Q′,Σ,Σ, c, $, q0, 1, δ) and a weight function ω′ such that
||A||(w) = fM

ω′ (w) holds for all w ∈ Σ∗. We define the wR-automaton (M,ω′)
by taking

• Q′ = Q ∪ {q0}, where q0 is a new state,
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• and by defining δ and ω′ as follows, where p, q ∈ Q and a ∈ Σ:

tq0,p : (q0, c) → (p,MVR), ω′(tq0,p) = in(p),
tq,a,p : (q, a) → (p,MVR), ω′(tq,a,p) = ω(q, a, p),
tq,$ : (q, $) → Accept, ω′(tq,$) = out(q).

Then, for all w ∈ Σ∗, each path in A with label w corresponds to an accepting
computation of M on input w. As each accepting computation of M begins
with a transition of type tq0,p and ends with a transition of type tq,$, it follows
immediately that ||A||(w) = fM

ω′ (w) holds.

If S = (S,+, ·, 0, 1) is zero-sum free, then the support {w ∈ Σ∗ | ||A||(w) �=
0 } of each recognizable series ||A|| ∈ SREC〈〈Σ∗〉〉 is a regular language (see
[Kir09, Kir11]). As already R-automata accept non-regular languages (see,
e.g., [Ott06]), it is clear that in this case the inclusion SREC〈〈Σ∗〉〉 ⊆ F(X,Σ, S)
is strict.

In a linearly ordered semiring S (see Section 3.2), the maximum and the
minimum of a finite subset T of S can be defined. We close this section with
the following definitions.

Definition 4.1.3 ([OW16]). If S = (S,+, ·, 0, 1) is a semiring that is ordered
with respect to a linear order ≤, then

min(T ) = a ∈ T such that a ≤ t for all t ∈ T

and

max(T ) = b ∈ T such that t ≤ b for all t ∈ T

for each finite non-empty subset T of S.

Definition 4.1.4 ([OW16]). Let S = (S,+, ·, 0, 1) be a linearly ordered semir-
ing, letM be a restarting automaton of type X with input alphabet Σ, and let ω
be a weight function that maps the transitions of M into S. As Σn is finite for
all n ≥ 0, we can extend the function fM

ω : Σ∗ → S to a function f̂M
ω : N → S

as follows:

f̂M
ω (n) = max{ fM

ω (w) | w ∈ Σ∗, |w| = n }.
By F̂(X,Σ, S) we denote the set of all functions of the form f̂M

ω : N → S,
where M is a restarting automaton of type X with input alphabet Σ.

Obviously, for the wRWW-automaton (M2, ω1) that is given in Example
3.3.2, the function f̂M2

ω1
(n) = n

4
for n ≥ 0. Note that by the definition of L2,

|w| is divisible by 4 for each w ∈ L2.
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4.2 Growth Rates

The purpose of this section is to present some results on the growth rates
of the functions that are induced by weighted restarting automata. First,
we start with an upper bound for a large subclass of functions in F̂(X,Σ, S).
For s ∈ S and k ∈ N, we use the notation sk to denote the k-fold product
s · s · · · · · s. In addition, k · s is used to denote the k-fold sum s+ s+ . . .+ s.

Theorem 4.2.1 ([OW16]). Let S = (S,+, ·, 0, 1) be a semiring that is ordered
with respect to a linear order ≤, let M = (Q,Σ,Γ, c, $, q0, k, δ) be a restarting
automaton, and let ω be a weight function that maps the transitions of M
into the subset S+ = { s ∈ S | s ≥ 0 } of S. Further, let sM = max({ω(t) |
t is a transition of M } ∪ {1}). Then there exist constants c1, c2 ∈ N such

that, for all n ≥ 1, f̂M
ω (n) ≤ cn

2

1 · sc2·n2

M holds.

Proof. In order to obtain the upper bound for the function f̂M
ω : N → S, we

have to answer the following two questions:

(1) What is the maximal length of a computation of M on an input of
length n? For n ≥ 0, let

l̂M(n) = max{ |C| | C ∈ CM(w), w ∈ Σn },
where |C| denotes the number of steps in the computation C, that is,
its length, and CM(w) is the set of accepting computations of M on
input w.

(2) What is the maximal number of accepting computations of M for any
input of length n? For n ≥ 0, let

r̂M(n) = max{ |CM(w)| | w ∈ Σn },
where |CM(w)| denotes the cardinality of the set CM(w).

It is easy to see that

f̂M
ω (n) ≤ r̂M(n) · sl̂M (n)

M

for all n ≥ 1. Hence, it suffices to derive upper bounds for the numbers l̂M(n)
and r̂M(n).

First, we consider the former number. For an integer n ≥ 1, let mclM(n)
denote the maximal number of steps in any cycle of M on any input of length
at most n. From the definition of the restarting automaton it follows that
mclM(n) ≤ n + 2, as a cycle of M that begins with a tape inscription of the
form cw$, where |w| = n, contains exactly one rewrite step, one restart step,
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and up to at most n move-right steps. Analogously, a tail computation that
begins with the above tape inscription consists of at most n+ 2 steps, where
an accept step may replace the restart step. Further, the rewrite step that
M executes within a cycle shortens the length of the tape, and thus each new
cycle starts on a shorter word than the previous one. Hence, for any input
w of length at most n, the length of any computation of M on input w is
bounded from above by the number

n∑
i=0

(i+ 2) =
n+2∑
i=2

i =
1

2
(n+ 2)(n+ 3)− 1 ≤ 5 · n2,

that is, we see that l̂M(n) ≤ 5 · n2 holds for all n ≥ 1.
Now, we turn to the number r̂M(n). Let dM denote the maximal number

of instructions of M , that is,

dM = max{|{ δ(q, u) �= ∅ | for each q ∈ Q and possible window content u }|}.
Then for any configuration of M , there are at most dM immediate successor
configurations. Hence, it follows that

r̂M(n) ≤ d5·n
2

M =
(
d5M

)n2

for all n ≥ 1. Thus, we obtain that

f̂M
ω (n) ≤ r̂M(n) · sl̂M (n)

M ≤ (
d5M

)n2 · s5·n2

M

for all n ≥ 1, that is, the above statement holds for the constants c1 = d5M
and c2 = 5.

Our next result shows that the upper bound given in the theorem above
is actually sharp.

Theorem 4.2.2 ([OW16]). Let S = (S,+, ·, 0, 1) be a linearly ordered semi-
ring, let s ∈ S such that s ≥ 0, let Σ be a finite alphabet, and let c1, c2 ∈ N+.
Then there exist a det-R-automaton M with input alphabet Σ and a weight
function ω for M such that

f̂M
ω (n) = cn

2+5n+2
1 · sc2·(n2+5n+2)

holds for all n ≥ 0.

Proof. We define a det-R-automaton M = (Q,Σ,Σ, c, $, q0, 2, δ), where Q =
{q0, q1, qr}, Σ = {a, b}, and δ contains the following transitions:

t1,a : (q0, ca) → (q1,MVR) for all a ∈ Σ,
t2 : (q0, c$) → Accept,

t3,a,b : (q1, ab) → (q1,MVR) for all a, b ∈ Σ,
t4,a : (q1, a$) → (qr, $) for all a ∈ Σ,
t5 : (qr, $) → Restart.
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For example, M executes the following computation on the input word
w = aabb:

q0caabb$ �M cq1aabb$ �M caq1abb$ �M caaq1bb$
�M caabq1b$ �M caabqr$ �M q0caab$
�M cq1aab$ �M caq1ab$ �M caaq1b$
�M caaqr$ �M q0caa$ �M cq1aa$
�M caq1a$ �M caqr$ �M q0ca$
�M cq1a$ �M cqr$ �M q0c$
�M Accept.

As M is deterministic, there is only a single computation for each input.
Actually, it is easily seen that L(M) = Σ∗, and that, for each word w of
length n, the accepting computation of M on input w consists of n cycles.
For a tape inscription x of length k > 0, the cycle starting from the restarting
configuration q0cx$ consists of k move-right steps, a single rewrite step that
deletes the last symbol of x, and a restart step, that is, it has length k + 2.
As the tail computation consists of a single accept step, it follows that

|C| =
n∑

k=1

(k + 2) + 1 =
1

2
(n2 + 5n+ 2)

for each computation C of M on any input of length n, that is, l̂M(n) =
1
2
(n2 + 5n+ 2) in the notation of the proof of the previous theorem.
Now we define the weight function ω by taking

ω(t) = c21 · s2c2 = (s2c2 + . . .+ s2c2) (c21 times)

for each transition t of M . It follows that

fM
ω (w) =

(
c21 · s2c2

)l̂M (n)

for each word w ∈ Σn, which implies that

f̂M
ω (n) = (c21 · s2c2)

1
2
(n2+5n+2)

= cn
2+5n+2

1 · sc2·(n2+5n+2)

for all n ≥ 0.

Now we restrict our attention to the semiring N = (N,+, ·, 0, 1) with the
natural order, and we present some families of functions from N into that
semiring that are contained in the class of growth functions F̂(RWW, {a},N).
Theorem 4.2.3 ([OW16]). For all constants c1, c2 ∈ N+, there exist a det-R-
automaton M with input alphabet Σ = {a} and a weight function ω such that
f̂M
ω (n) = c1 · cn2 holds for all n ≥ 0.
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Proof. We define a det-R-automaton M = (Q,Σ,Σ, c, $, q0, 3, δ), where Q =
{q0, qr}, Σ = {a}, and δ contains the following transitions:

t1 : (q0, caa) → (qr, ca), t4 : (q0, c$) → Accept,
t2 : (q0, ca$) → (q0,MVR), t5 : (q0, a$) → Accept,
t3,x : (qr, x) → Restart for all x ∈ {aaa, aa$, a$, $}.

Then it is easily seen that L(M) = Σ∗. Each cycle of a computation of M
consists of two steps, that is, a rewrite and a restart step, the tail computation
for the tape inscription ca$ consists of two steps, that is, a move-right step and
an accept step, and the tail computation for the tape inscription c$ consists
of a single accept step. Thus, it follows that on each input of length n, the
maximal length of a computation of M is

l̂M(n) =

{
2n for n ≥ 1,
1 for n = 0.

Let c1, c2 ∈ N+, and let ω be the weight function that assigns weight c1
to the two accept transitions t4 and t5, that assigns weight c2 to the rewrite
transition t1 and the move-right transition t2, and that assigns weight 1 to
all restart transitions t3,x for x ∈ {aaa, aa$, a$, $}. Given an input of length
n, the computation of M contains n − 1 rewrite steps, n − 1 restart steps,
a single move-right step, and a single accept step. Hence, it follows that
fM
ω (an) = c1 · cn2 for n ≥ 1, and fM

ω (a0) = fM
ω (λ) = c1 = c1 · c02.

Theorem 4.2.4 ([OW16]). For all constants c, k ∈ N+, there exist a det-RWW-
automaton M with input alphabet Σ = {a} and a weight function ω such that

f̂M
ω (n) =

{
c · nk, if n = 2m for some m ≥ 0,
0, otherwise.

Proof. Let M = (Q, {a},Γ, c, $, q0, 3, δ) be the det-RWW-automaton that is
defined by taking Q = {q0, qr} and Γ = {a, b, A}, and by defining δ as follows,
where x ∈ Γ3 ∪ Γ≤2 · $:

t1 : (q0, caa) → (q0,MVR), t9 : (q0, bbA) → (qr, AA),
t2 : (q0, cbb) → (q0,MVR), t10 : (q0, bb$) → (qr, A$),
t3 : (q0, cAA) → (q0,MVR), t11 : (q0, AAb) → (qr, bb),
t4 : (q0, aaa) → (q0,MVR), t12 : (q0, AA$) → (qr, b$),
t5 : (q0, bbb) → (q0,MVR), t13,x : (qr, x) → Restart,
t6 : (q0, AAA) → (q0,MVR), t14 : (q0, ca$) → Accept,
t7 : (q0, aab) → (qr, bb), t15 : (q0, cb$) → Accept,
t8 : (q0, aa$) → (qr, b$), t16 : (q0, cA$) → Accept.

54



Chapter 4. Functions Computed by Weighted Restarting Automata

For example, on the input w = aaaa M can execute the following compu-
tation:

q0caaaa$ �M cq0aaaa$ �M caq0aaa$ �M caaq0aa$
�M caabqr$ �M q0caab$ �M cq0aab$
�M cbbqr$ �M q0cbb$ �M cq0bb$
�M cAqr$ �M q0cA$ �M Accept.

It is easily seen that M accepts each input word of length 2n for n ≥ 0,
that is, L(M) = { a2n | n ≥ 0 }.

Now let c, k ∈ N+. We define the weight function ω that assigns weight 2k

to transitions t8, t10, and t12, that assigns weight c to transitions t14, t15 and
t16, and that assigns weight 1 to all other transitions. On the input a2

m
, M

first executes 2m−1 cycles, and during this phase a2
m
is rewritten into b2

m−1
. In

the first of these cycles, the rewrite transition t8 is applied, while in the other
cycles, the rewrite transition t7 is performed. Thus, the weight of this part of
the computation is 2k. Next the tape inscription b2

m−1
is rewritten into A2m−2

within 2m−2 cycles, where in the first cycle the rewrite transition t10 is used,
while in the other cycles, the rewrite transition t9 is used. Thus, also this
part of the computation has weight 2k. Finally, the tape inscription A2m−2

is rewritten into b2
m−3

within 2m−3 cycles, where in the first cycle rewrite
transition t12 is used, while in the other cycles, the rewrite transition t11 is
used. Thus, also this part of the computation has weight 2k. The latter two
types of sequences of cycles alternate until tape inscription b or A is reached,
which is then accepted by using the accept transition t15 or t16. It follows
that, if n = 2m for some m ≥ 0, then

fM
ω (an) = fM

ω (a2
m

) = c · (2k)m = c · (2k)logn = c · nk,

and fM
ω (an) = 0, if n is not a power of 2.

By using nondeterministic types of restarting automata, we can combine
some copies of the deterministic RWW-automaton into a nondeterministic
RWW-automaton, such that a polynomial can be induced.

Theorem 4.2.5 ([OW16]). For each polynomial P (x) over N, there exist an
RWW-automaton M with input alphabet Σ = {a} and a weight function ω
such that

f̂M
ω (n) =

{
P (n), if n = 2m for some m ≥ 0,
0, otherwise.

Proof. First, let P (x) be a polynomial over N, that is,

P (x) = c1 · xk1 + c2 · xk2 + . . .+ cr · xkr + d,

where r ≥ 0, c1, k1, c2, k2, . . . , cr, kr ≥ 1, and d ≥ 0.
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Then we construct an RWW-automatonM by combining r+1 copies of the
det-RWW-automaton that is presented in the proof of the previous theorem.
Accordingly, we define M = (Q,Σ,Γ, c, $, q0, 3, δ), where Q = {q0, qr}, Γ =
{ a, bi, Ai | i = 1, 2, . . . , r + 1 }, and δ contains the following transitions:

t1 : (q0, caa) → (q0,MVR),
t2 : (q0, aaa) → (q0,MVR),
t3.i : (q0, aabi) → (qr, bibi) for i = 1, . . . , r + 1,
t4.i : (q0, aa$) → (qr, bi$) for i = 1, . . . , r + 1,
t5 : (q0, ca$) → Accept,
t6 : (qr, x) → Restart for all x ∈ Γ3 ∪ Γ≤2 · $,
t7.i : (q0, cbibi) → (q0,MVR) for i = 1, . . . , r + 1,
t8.i : (q0, bibibi) → (q0,MVR) for i = 1, . . . , r + 1,
t9.i : (q0, bibiAi) → (qr, AiAi) for i = 1, . . . , r + 1,
t10.i : (q0, bibi$) → (qr, Ai$) for i = 1, . . . , r + 1,
t11.i : (q0, cbi$) → Accept for i = 1, . . . , r + 1,
t12.i : (q0, cAiAi) → (q0,MVR) for i = 1, . . . , r + 1,
t13.i : (q0, AiAiAi) → (q0,MVR) for i = 1, . . . , r + 1,
t14.i : (q0, AiAibi) → (qr, bibi) for i = 1, . . . , r + 1,
t15.i : (q0, AiAi$) → (qr, bi$) for i = 1, . . . , r + 1,
t16.i : (q0, cAi$) → Accept for i = 1, . . . , r + 1.

It is easily seen that L(M) = { a2n | n ≥ 0 }, and that for each choice of
auxiliary symbols bi and Ai (1 ≤ i ≤ r+1), there is an accepting computation
(see instructions t4.i). Thus, on an input of the form a2

n
(n ≥ 1), M has r+1

accepting computations.
Now we define a weight function ω as follows

ω(tx) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2ki for x ∈ {4.i, 10.i, 15.i} (1 ≤ i ≤ r),
ci for x ∈ {11.i, 16.i} (1 ≤ i ≤ r),
d for x = 4.r + 1,
P (1) for x = 5,
1 for all other cases.

As in the proof of Theorem 4.2.4, it follows that the computation of M on
input a2

m
(m ≥ 1) that uses the auxiliary symbols bi and Ai for some i ∈

{1, . . . , r} has weight ci ·
(
2ki

)m
. Further, the corresponding computation that

uses the auxiliary symbols br+1 and Ar+1 has weight d. Accordingly, it follows
that, if n = 2m for some m ≥ 1, then

fM
ω (an) = c1 · nk1 + c2 · nk2 + . . .+ cr · nkr + d = P (n).

Further, we have fM
ω (a) = P (1), and fM

ω (an) = 0, if n is not a power of two.
This completes the proof of Theorem 4.2.5.
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By combining the RWW-automaton from the proof of the last theorem
with the det-R-automaton from the proof of Theorem 4.2.3, it can be shown
that weighted restarting automata can also represent functions that can be
expressed as a sum of a polynomial and exponential functions. Thus, we see
that the class of functions F̂(RWW, {a}, (N,+, ·, 0, 1)) is quite rich.

4.3 Closure Properties

In [JLNO04] it is shown that the language classes L(RWW) and L(RRWW)
are closed under the operations of union and concatenation. In this section we
extend these results to wRWW- and wRRWW-automata. We will show that
the classes of functions F(RWW,Σ, S) and F(RRWW,Σ, S) are closed under
the operations of addition, scalar multiplication, and Cauchy product, that
is, if f, g : Σ∗ → S belong to F(RWW,Σ, S) (or F(RRWW,Σ, S)), then also
the functions (f + g), (s · f) (for s ∈ S), and (f · g) : Σ∗ → S belong to this
class of functions, where, for all w ∈ Σ∗,

(f + g)(w) = f(w) + g(w),

(s · f)(w) = s · f(w),
and

(f · g)(w) =
∑
w=uv

(f(u) · g(v)) .

Hence, if M1 and M2 are restarting automata of type X ∈ {RWW,RRWW}
with input alphabet Σ, and if ω1 and ω2 are weight functions for M1 and M2,
then there exist restarting automata M+,Ms, and Mc of type X and weight
functions ω+, ωs, and ωc such that fM+

ω+
= f + g, fMs

ωs
= s · f , and fMc

ωc
= f · g.

We begin with the operation of addition. To do this, we need the following
technical lemma.

Lemma 4.3.1. For all X ∈ {R,RR,RW,RRW,RWW,RRWW}, if M = (M,ω)
is a wX-automaton of window size k ≤ 2, then there exists a wX-automaton
M′ = (M ′, ω′) of window size k′ = 3 such that fM

ω (w) = fM ′
ω′ (w) for all

w ∈ Σ∗.

Proof. Let M = (Q,Σ,Γ, c, $, q0, k, δ) be a restarting automaton of type X,
where k ≤ 2, and let ω be a weight function from the transitions of M into
a semiring (S,+, ·, 0, 1). First, we consider the case that X ∈ {R,RW,RWW},
that is, after performing a rewrite stepM restarts immediately. If k = 1, then
the transition function δ′ of M ′ and the weight function ω′ are described as
follows.
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1. First we define some transitions that allow M ′ to simulate move-right
transitions of M . If δ contains a move-right transition of the form

t : (p, u) → (q,MVR)

for u ∈ {c} ∪ Γ, then δ′ contains the following transitions for all admis-
sible words x ∈ Γ2 ∪ (Γ · $) ∪ {$}:

tx : (p, ux) → (q,MVR),

and ω′ assigns the weight ω(t) to all these transitions.

2. Next we define some transitions that enableM ′ to simulate rewrite tran-
sitions of M . If δ contains a rewrite transition of the form

t : (p, u) → (q, λ)

for some u ∈ Γ, then δ′ contains the following transitions for all admis-
sible words x ∈ Γ2 ∪ (Γ · $) ∪ {$}:

tx : (p, ux) → (q, x),

and ω′ assigns the weight ω(t) to all these transitions.

3. Now we consider the restart transitions. As X ∈ {R,RW,RWW}, each
rewrite operation ofM is immediately followed by a restart step. Hence,
if a state q of M is entered through a rewrite step, then in state q, M
must restart immediately, that is, δ contains the transitions

t : (q, u) → Restart

for each possible window content u ∈ Γ ∪ {$}. Accordingly, δ contains
the following transitions for all admissible words x ∈ Γ2∪ (Γ ·$)∪{$, λ}:

tx : (q, ux) → Restart,

and we take ω′(tx) = ω(t).

4. Finally, we define those transitions that allow M ′ to simulate accept
transitions of M . If δ contains an accept transition of the form

t : (q, u) → Accept

for some u ∈ {c}∪Γ∪{$}, then δ′ contains the following transitions for
all admissible words x ∈ Γ2 ∪ (Γ · $) ∪ {$, λ}:

tx : (q, ux) → Accept,

and we take ω′(tx) = ω(t).
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Chapter 4. Functions Computed by Weighted Restarting Automata

Above we considered the case that k = 1, and in an analogous way the
case that k = 2 can also be dealt with.

Now we turn to the case that X ∈ {RR,RRW,RRWW}. The move-right,
restart and accept transitions can be simulated in the same way as for the case
X ∈ {R,RW,RWW}. However, as k′ is strictly larger than k, after performing
the above rewrite transition tx : (p, ux) → (q, vx), the window of M ′ skips
across the word x of length k′ − k. In order to simplify the discussion, we
assume that M only performs restart operations at the right end of its tape.
This is easily achieved by replacing every restart transition by a move-right
step (with the same weight as the corresponding restart step), which enters a
special state qmv, and in state qmv, M moves all the way to the right end of its
tape and performs a restart step on the $-symbol, where all these additional
transitions have weight 1. Under this assumption a rewrite step of M can
be simulated by combining a rewrite step of M with k′ − k many move-right
steps. First, we consider the case that k = 2, and we define the following
states for M ′:

Qrw = { (q1, xy, q2) | q1, q2 ∈ Q and x, y ∈ Γ }.
If δ contains the transitions of the forms

t1 : (p, u) → (q1, v),
t2 : (q1, xy) → (q2,MVR),
t3 : (q2, yz) → (q3,MVR),

where u ∈ {c} · Γ ∪ Γ2, v ∈ Γ ∪ {c, λ}, and x, y, z ∈ Γ, then δ′ contains the
following transitions for all admissible words z1 ∈ Γ ∪ {$}

t′x : (p, ux) → ((q1, xy, q2), vx),
t′yzz1 : ((q1, xy, q2), yzz1) → (q3,MVR),

and we take ω′(t′x) = ω(t1) ·ω(t2) and ω′(t′yzz1) = ω(t3). Note that if v = $,M ′

does not need additional move-right steps. Analogously, the case that |u| = 1
can also be dealt with, which completes the proof.

Theorem 4.3.1 ([OW16]). For all alphabets Σ and semirings S, the classes of
functions F(RWW,Σ, S) and F(RRWW,Σ, S) are closed under the operation
of addition.

Proof. Let S = (S,+, ·, 0, 1) be a semiring, letM1 = (Q1,Σ,Γ1, c, $, q
(1)
0 , k1, δ1)

and M2 = (Q2,Σ,Γ2, c, $, q
(2)
0 , k2, δ2) be RWW-automata with input alpha-

bet Σ, and let ω1 and ω2 be weight functions that map the transitions of
M1 and of M2 to S. In order to prove that F(RWW,Σ, S) is closed under
the operation of addition, we construct an RWW-automaton M+ with input
alphabet Σ and a weight function ω+ such that

fM+
ω+

(w) = fM1
ω1

(w) + fM2
ω2

(w)
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holds for all w ∈ Σ∗.
On an input w ∈ Σ∗, the automaton M+ can choose to simulate a compu-

tation of M1 or a computation of M2 on the input w. However, after a restart
step M+ is not able to remember its choice within its finite-state control.
Therefore, it has to store this information on the tape, so that it can read this
information after a restart step. Accordingly, M+ will place a marking on the
prefix of the input in the first cycle. Unfortunately, each rewrite step must be
strictly length-reducing. In order to satisfy this condition,M+ can replace the
first two symbols a1a2 of the input by a special symbol [a1, a2, 1] or [a1, a2, 2]
as an indicator on the automaton that M+ has chosen to simulate.

However, in some later rewrite transitions, the automaton Mi (i ∈ {1, 2})
that is being simulated may just remove the symbol a1 or a2 without changing
any other symbol. IfM+ replaces the symbol [a1, a2, i] simply by some symbol
encoding the remaining symbol a2 (or a1) together with the indicator i, i.e.,
[a1, i] or [a2, i], then this rewrite step of M+ would not be length-reducing. In
order to solve this problem, M+ will combine the symbol of the form [a1, i]
(or [a2, i]) with the next symbol x into the new symbol [a1, x, i] (or [a2, x, i]).
For this purpose, M+ needs a read/write window that is larger than those of
M1 and M2.

Now we describe the construction of M+ and the weight function ω+ in
detail. LetM+ = (Q,Σ,Γ, c, $, q0, k, δ) be the RWW-automaton that is defined
as follows:

- Q = {q0, qr} ∪ { q(1) | q ∈ Q1 } ∪ { q(2) | q ∈ Q2 }
∪ { q(i)MVR, q

(i)
a , q

(i)
a′ , q

(i)
0′ , q

(i)
0′′ | i = 1, 2 },

- Γ = Γ1 ∪ Γ2

∪{ [a1, a2, 1], [a1, 1], [1] | a1, a2 ∈ Γ1 }
∪ { [a1, a2, 2], [a1, 2], [2] | a1, a2 ∈ Γ2 },

- k = max{k1, k2}+ 1, and

- the transition function δ of M+ and the weight function ω+ are as de-
scribed below.

We now present the definition of δ step by step. By Lemma 4.3.1, here we
only consider the case that max{k1, k2} ≥ 3, which means that k ≥ 4.

1. First we define some transitions that enableM+ to deal with those inputs
w ∈ Σ∗, where |w| ≤ k−2. For each w ∈ Σ≤k−2 and w ∈ L(M1)∪L(M2),
we define the following transition,

tw : (q0, cw$) → Accept.

60



Chapter 4. Functions Computed by Weighted Restarting Automata

In addition, we define ω+(tw) = fM1
ω1

(w) + fM2
ω2

(w). Hence, for all input
words w ∈ Σ≤k−2, fM+

ω+
(w) = fM1

ω1
(w) + fM2

ω2
(w) holds.

2. Next we define some transitions that allow M+ to process restarting
configurations of the form q0cz$, where z ∈ Γ+ � Σ∗ is of length at
most k − 2, that is, the complete tape content cz$ is contained in the
window of M+. By our strategy described above, the first letter z1 of
z encodes the choice of which automaton M+ currently simulates, that
is, z1 ∈ Γ � (Γ1 ∪ Γ2). Accordingly, z1 ∈ {[a1, a2, i], [a1, i], [i]} for some
a1, a2 ∈ Γi and i ∈ {1, 2}. If Mi accepts starting from the restarting

computation q
(i)
0 ca1a2z

′$ (or q
(i)
0 ca1z

′$ or q
(i)
0 cz′$) for z = z1z

′, then M+

has an accepting transition

tz : (q0, cz$) → Accept,

and we take ω+(tz) = s, where s is the sum of the weights of all accepting
computations of Mi that start from this configuration. Note that there
may be several computations ofMi that start from the initial configura-
tion q

(i)
0 cw$, and reach the configuration q

(i)
0 ca1a2z

′$, and thus there may
also be several accepting computations of Mi that start from the latter
configuration. During the simulation ofM1 orM2, wheneverM+ reaches
a restarting configuration q0cz$ such that |z| ≤ k − 2, then the corre-
sponding transition tz is performed, which ends the current computation.
Because of the distributive law of semirings, fM+

ω+
(w) = fM1

ω1
(w)+fM2

ω2
(w)

holds for all w ∈ Σ∗. Hence, in the following we only need to consider
the case that the length of the tape content is larger than the size k of
the window of M+.

3. Now we define some transitions that allow M+ to place a marking on
the prefix of a given input word of length at least k − 1 ≥ 3 in order to
store its choice between simulating M1 or M2:

t(a1,a2,i) : (q0, ca1a2x) → (qr, c[a1, a2, i]x),
tr,w : (qr, w) → Restart,

where a1, a2 ∈ Σ, i ∈ {1, 2}, x ∈ Σk−3, and w denotes all possible
window contents. Further, we take

ω+(t(a1,a2,i)) = ω+(tr,w) = 1

for all a1, a2 ∈ Σ and i ∈ {1, 2}.

4. Here we define those transitions that allow M+ to simulate move-right
steps of M1 and M2, where we must distinguish between several cases.
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(4.1) If δi (i ∈ {1, 2}) contains a transition of the form

t : (q
(i)
0 , ca1a2u) → (ql,MVR)

for some ql ∈ Qi, a1, a2 ∈ Γi, and u ∈ Γ∗
i satisfying |ca1a2u| = ki,

then δ contains the following transitions for all admissible choices
of x ∈ Γ∗

i ∪ (Γ∗
i · $):

t̂1 : (q0, c[a1, a2, i]ux) → (q
(i)
l ,MVR),

t̂2 : (q0, c[a1, i]a2ux) → (q
(i)
l ,MVR),

t̂3 : (q0, c[i]a1a2ux) → (q
(i)
MVR,MVR),

t̂4 : (q
(i)
MVR, [i]a1a2ux) → (q

(i)
l ,MVR).

For these transitions we define

ω+(t̂1) = ω+(t̂2) = ω+(t̂4) = ωi(t)

and ω+(t̂3) = 1. Then ω+(t̂3) · ω+(t̂4) = ωi(t), which means that
together t̂3 and t̂4 simulate the transition t on a tape content of the
form c[i]a1a2w$.

(4.2) If δi (i ∈ {1, 2}) contains a transition of the form

t : (qm, a1a2u) → (ql,MVR)

for some qm, ql ∈ Qi, a1, a2 ∈ Γi, and u ∈ Γ∗
i satisfying |a1a2u| = ki,

then δ contains the following transitions for all admissible choices
of x ∈ Γ∗

i ∪ (Γ∗
i · $):

t̂1 : (q
(i)
m , a1a2ux) → (q

(i)
l ,MVR),

t̂2 : (q
(i)
m , [a1, i]a2ux) → (q

(i)
l ,MVR),

and we take
ω+(t̂1) = ω+(t̂2) = ωi(t).

Now we consider tape content of the form c[a1, a2, i]w$. In order
to simulate the transition t correctly on such a tape content, we
need to combine this transition with those transitions that Mi can
perform in the configuration ca1qla2w$. Based on the latter tran-
sitions, we have various options:

(a) If δi contains a transition of the form

t′1 : (ql, a2ua) → (ql′ ,MVR)
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for some ql′ ∈ Qi, a ∈ Γi, and u ∈ Γ∗
i satisfying |a2ua| =

ki, then δ contains the following additional transitions for all
admissible choices of x ∈ Γ∗

i ∪ (Γ∗
i · $):

t̂′1 : (q
(i)
m , [a1, a2, i]uax) → (q

(i)
l′ ,MVR),

where ω+(t̂
′
1) = ωi(t) · ωi(t

′
1), as t̂

′
1 simulates the sequence of

transitions t and t′1 of Mi.

(b) If δi contains a transition of the form

t′2 : (ql, a2ua) → (ql′ , v)

for some ql′ ∈ Qi, a ∈ Γi, u, v ∈ Γ∗
i such that |a2ua| = ki and

|v| < ki, then δ contains the following additional transitions
for all admissible choices of x ∈ Γ∗

i ∪ (Γ∗
i · $):

t̂′2 : (q
(i)
m , [a1, a2, i]uax) → (q

(i)
l′ , v

′x),

where

v′ =
{

[a1, i]v, if |v| < |ua|,
[a1, a3, i]ṽ, if |v| = |ua| and v = a3ṽ.

Further, we take ω+(t̂
′
2) = ωi(t) · ωi(t

′
2), as t̂

′
2 simulates the

sequence of transitions t and t′2.

(c) If δi contains a transition of the form

t′3 : (ql, a2ua) → Accept

for some a ∈ Γi and u ∈ Γ∗
i satisfying |a2ua| = ki, then δ

contains the following additional transitions for all admissible
words x ∈ Γ∗

i ∪ (Γ∗
i · $):

t̂′3 : (q
(i)
m , [a1, a2, i]uax) → Accept,

and for these transitions the weight function ω+ is extended
by taking ω+(t̂

′
3) = ωi(t) · ωi(t

′
3).

(4.3) The case that δi (i ∈ {1, 2}) contains a transition of the form

t : (qm, a1a2u$) → (ql,MVR)

for some qm, ql ∈ Qi, a1, a2 ∈ Γi, and u ∈ Γ∗
i satisfying |a1a2u$| ≤ ki

can be dealt with in the same way as (4.2). However, note that here
we do not need to consider the case that the tape content contains
a symbol of the form [a1, a2, i], since by our construction such a
symbol can only occur immediately to right of the left sentinel c,
and k > ki.
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5. Here we present those transitions that allow M+ to simulate rewrite
steps ofM1 andM2. However, after a rewrite stepMi must immediately
restart. As k is strictly larger than ki, the window of M+ skips across
the prefix of the window content for the subsequent restart transition of
Mi. In order to overcome this problem, M+ has to store the prefix in
its finite control. Again we must distinguish between several cases.

(5.1) If δi (i ∈ {1, 2}) contains transitions of the form

t : (q
(i)
0 , ca1a2u) → (ql, cv),

tr : (ql, xy) → Restart,

where ql ∈ Qi, a1, a2 ∈ Γi, u, v ∈ Γ∗
i satisfying |ca1a2u| = ki and

|v| ≤ |u|+1, x, y ∈ Γ∗
i∪(Γ∗

i ·$), and |xy| ≤ ki, then δ contains the fol-
lowing transitions for all admissible choices of x, y, z ∈ Γ∗

i ∪ (Γ∗
i ·$):

t̂1 : (q0, c[a1, a2, i]ux) → (q
(i)
l,x, cαx), where

α =

⎧⎪⎨
⎪⎩

[i]v, if |v| < |u|,
[a3, i]ṽ, if |v| = |u|, v = a3ṽ,

[a3, a4, i]ṽ, if |v| = |u|+ 1, v = a3a4ṽ,

t̂2 : (q0, c[a1, i]a2ux) → (q
(i)
l,x, cαx), where

α =

{
[i]v, if |v| ≤ |u|,
[a3, i]ṽ, if |v| = |u|+ 1, v = a3ṽ,

t̂3 : (q0, c[i]a1a2ux) → (q
(i)
l,x, c[i]vx),

t̂r,xy : (q
(i)
l,x, yz) → Restart.

Further, we define

ω+(t̂1) = ω+(t̂2) = ω+(t̂3) = ωi(t),

and

ω+(t̂r,xy) = ωi(tr).

(5.2) If δi (i ∈ {1, 2}) contains transitions of the form

t : (qm, a1a2u) → (ql, v),
tr : (ql, xy) → Restart,

where qm, ql ∈ Qi, a1, a2 ∈ Γi, u, v ∈ Γ∗
i satisfying |a1a2u| = ki,

|v| ≤ |u|+1, x, y ∈ Γ∗
i ∪ (Γ∗

i · $), and |xy| ≤ ki, then δ contains the
following transitions for all admissible choices of x, y, z ∈ Γ∗

i ∪ (Γ∗
i ·
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$):

t̂1 : (q
(i)
m , [a1, a2, i]ux) → (q

(i)
l,x, αx), where

α =

⎧⎪⎨
⎪⎩

[i]v, if |v| < |u|,
[a3, i]ṽ, if |v| = |u|, v = a3ṽ,

[a3, a4, i]ṽ, if |v| = |u|+ 1, v = a3a4ṽ,

t̂2 : (q
(i)
m , [a1, i]a2ux) → (q

(i)
l,x, αx), where

α =

{
[i]v, if |v| ≤ |u|,
[a3, i]ṽ, if |v| = |u|+ 1, v = a3ṽ,

t̂3 : (q
(i)
m , a1a2ux) → (q

(i)
l,x, vx),

t̂r,xy : (q
(i)
l,x, yz) → Restart.

Further, we take

ω+(t̂1) = ω+(t̂2) = ω+(t̂3) = ωi(t),

and

ω+(t̂r,xy) = ωi(tr).

(5.3) If δi (i ∈ {1, 2}) contains a transition of the form

t : (qm, a1a2$) → (ql, v$),

where qm, ql ∈ Qi, a1, a2 ∈ Γi, v ∈ Γ≤1
i , then δ contains the follow-

ing transitions:

t̂ : (q(i)m , a1a2$) → (q
(i)
l , v$).

Further, let ω+(t̂) = ωi(t). Observe that by our assumption we do
not need to consider the cases that M+ must simulate transition t
on a tape content of the form [a1, i]a2$ or [a1, a2, i]$.

In the same way, for a transition

t : (qm, a1$) → (ql, $)

of Mi, let δ contain the transition

t̂ : (q(i)m , a1$) → (q
(i)
l , $),

and let ω+(t̂) = ωi(t).

6. Now we consider the restart transitions. For RWW-automata, each
rewrite operation is immediately followed by a restart step. Hence, if a
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state q of Mi (i ∈ {1, 2}) is entered through a rewrite step, then in state
q, Mi must restart immediately, that is, δi contains the transitions

tu : (q, u) → Restart

for each possible window content u. Accordingly, δ contains the following
transitions for all admissible words x ∈ Γ∗

i ∪ (Γ∗
i · $):

t̂u,x : (q(i), ux) → Restart,

and ω+(t̂u,x) = ωi(tu). Recall that a restart step is only performed after
a rewrite step has been executed, which means that at this point the
read/write window does not contain any symbol from Γ� (Γ1 ∪ Γ2).

7. Finally, we consider the accept transitions of M1 and M2, where we
distinguish between two cases.

(7.1) If δi (i ∈ {1, 2}) contains a transition of the form

t : (q0, ca1a2u) → Accept

for some a1, a2 ∈ Γi and u ∈ Γ∗
i such that |ca1a2u| = ki, then

δ contains the following transitions for all admissible choices of
x ∈ Γ∗

i ∪ (Γ∗
i · $):

t̂1 : (q0, c[a1, a2, i]ux) → Accept,
t̂2 : (q0, c[a1, i]a2ux) → Accept,
t̂3 : (q0, c[i]a1a2ux) → Accept,

and we take

ω+(t̂1) = ω+(t̂2) = ω+(t̂3) = ωi(t).

(7.2) If δi (i ∈ {1, 2}) contains a transition of the form

t : (qm, a1a2u) → Accept

for some qm ∈ Qi, a1, a2 ∈ Γi, and u ∈ Γ∗
i such that |a1a2u| = ki,

then δ contains the following transitions for all admissible choices
of x ∈ Γ∗

i ∪ (Γ∗
i · $):
t̂1 : (q

(i)
m , [a1, a2, i]ux) → Accept,

t̂2 : (q
(i)
m , [a1, i]a2ux) → Accept,

t̂3 : (q
(i)
m , a1a2ux) → Accept,

and let
ω+(t̂1) = ω+(t̂2) = ω+(t̂3) = ωi(t).
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Chapter 4. Functions Computed by Weighted Restarting Automata

This completes the proof for the case that M1 and M2 are RWW-
automata.

Finally, we consider the case thatM1 andM2 are RRWW-automata. First,
in order to simplify the discussion, we observe that we can assume without
loss of generality thatM1 andM2 only perform restart operations at the right
end of their tapes, that is, when the read/write window only contains the right
sentinel $. This is easily realized by replacing every other restart transition by
a move-right step (with the same weight as the corresponding restart step),
which enters a special state qmv, and in state qmv, the RRWW-automaton
moves all the way to the right end of its tape and performs a restart step on
the $-symbol, where all these additional transitions have weight 1.

8. Under this assumption we now describe the construction ofM+ fromM1

andM2. The transitions ofM+ for making the choice between simulating
M1 orM2 and the transitions for simulating move-right and accept steps
of M1 and M2 are defined as for RWW-automata (see above). Because
of the above assumption on the restart operations, these are also easily
simulated by M+. Hence, it remains to deal with the rewrite transitions
of M1 and M2. For this purpose we have to solve the following technical
problem.

WheneverMi (i ∈ {1, 2}) applies a rewrite operation (qm, u) → (ql, v) to
a configuration of the form cw1qmuw2$, then the configuration cw1vqlw2$
is obtained. As the size k of the read/write window of M+ is strictly
larger than that of the read/write window of Mi, the above operation

is simulated by rewrite operations of the form (q
(i)
m , ux) → (q

(i)
l′ , vx) for

all admissible words x ∈ Γ+
i . However, this means that from the con-

figuration cw1q
(i)
m uw2$ = cw1q

(i)
m uxw′

2$, the configuration cw1vxq
(i)
l′ w

′
2$

is obtained in a single step, that is, the window of M+ skips across
the prefix x of w2 of length k − ki, while the window of Mi must be
shifted across x by applying |x| many move-right steps. Unfortunately,
we cannot simply define the weights of the above transitions of M+ as
the product of the weights of the rewrite transition of Mi and the corre-
sponding move-right transitions ofMi, since these move-right transitions
depend on the next ki − 1 symbols following the factor x.

To overcome this problem, we first introduce some additional states
for M+. For i ∈ {1, 2}, let Qrw

i denote the set of states of Mi that
are reached through a rewrite step. Further, for q ∈ Qrw

i , x ∈ Γk−ki
i ,

and y ∈ Γki−1 ∪ Γ≤ki−2
i · $, let Ci(q, x, y) be the set of computations of

Mi that consist of |x| move-right steps that take a configuration of the
form cwqxyw′ into a configuration of the form cwxq′yw′$ for some state
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q′ ∈ Qi. We define the following states for M+:

Qrw = { q(1)l,x,y,C | ql ∈ Qrw
1 , x ∈ Γ≤k−k1

1 ,

y ∈ Γk1−1
1 ∪ Γ≤k1−2

1 · $, C ∈ C1(ql, x, y) }
∪ { q(2)l,x,y,C | ql ∈ Qrw

2 , x ∈ Γ≤k−k2
2 ,

y ∈ Γk2−1
2 ∪ Γ≤k2−2

2 · $, C ∈ C2(ql, x, y) }.

Now we can proceed by replacing the rewrite transitions introduced in
Case 5 above as follows, where again we distinguish between several
cases.

(8.1) If δi (i ∈ {1, 2}) contains a transition of the form

t : (q
(i)
0 , ca1a2u) → (ql, cv)

for some ql ∈ Qrw
i , a1, a2 ∈ Γi, and u, v ∈ Γ∗

i satisfying |ca1a2u| = ki
and |v| ≤ |u| + 1, then δ contains the following transitions for all
admissible choices of x ∈ Γ∗

i ∪ (Γ∗
i · $), y ∈ Γki−1

i ∪ (Γ≤ki−2
i · $), and

C ∈ Ci(ql, x, y):

t̂1,x,y,C : (q0, c[a1, a2, i]ux) → (q
(i)
l,x,y,C , cαx), where

α =

⎧⎪⎨
⎪⎩

[i]v, if |v| < |u|,
[a3, i]ṽ, if |v| = |u|, v = a3ṽ,

[a3, a4, i]ṽ, if |v| = |u|+ 1, v = a3a4ṽ,

t̂2,x,y,C : (q0, c[a1, i]a2ux) → (q
(i)
l,x,y,C , cαx), where

α =

{
[i]v, if |v| ≤ |u|,
[a3, i]ṽ, if |v| = |u|+ 1, v = a3ṽ,

t̂3,x,y,C : (q0, c[i]a1a2ux) → (q
(i)
l,x,y,C , c[i]vx).

Further,

ω+(t̂1,x,y,C) = ω+(t̂2,x,y,C) = ω+(t̂3,x,y,C) = ωi(t)

is chosen.

(8.2) If δi (i ∈ {1, 2}) contains a transition of the form

t : (qm, a1a2u) → (ql, v),

where qm ∈ Qi, ql ∈ Qrw
i , a1, a2 ∈ Γi, u, v ∈ Γ∗

i satisfying |a1a2u| =
ki and |v| ≤ |u| + 1, then δ contains the following transitions for
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all admissible choices of x ∈ Γ∗
i ∪ (Γ∗

i · $), y ∈ Γki−1
i ∪ (Γ≤ki−2

i · $),
and C ∈ Ci(ql, x, y):

t̂1,x,y,C : (q
(i)
m , [a1, a2, i]ux) → (q

(i)
l,x,y,C , αx), where

α =

⎧⎪⎨
⎪⎩

[i]v, if |v| < |u|,
[a3, i]ṽ, if |v| = |u|, v = a3ṽ,

[a3, a4, i]ṽ, if |v| = |u|+ 1, v = a3a4ṽ,

t̂2,x,y,C : (q
(i)
m , [a1, i]a2ux) → (q

(i)
l,x,y,C , αx), where

α =

{
[i]v, if |v| ≤ |u|,
[a3, i]ṽ, if |v| = |u|+ 1, v = a3ṽ,

t̂3,x,y,C : (q
(i)
m , a1a2ux) → (q

(i)
l,x,y,C , vx).

Further, we take

ω+(t̂1,x,y,C) = ω+(t̂2,x,y,C) = ω+(t̂3,x,y,C) = ωi(t).

(8.3) For each state q
(i)
l,x,y,C ∈ Qrw, we have to add some transitions to δ.

From the definition above we see that C is a computation ofMi that
takes a configuration of the form cwqlxyw

′$ to the configuration
cwxq′yw′$ for some q′ ∈ Qi. For b ∈ Γi, let

tq′,yb : (q
′, yb) → (qj,MVR)

be a transition of Mi that is applicable to a configuration of the
form cwxq′ybw′$. Then we add the transition

t̂l,x,y,C,b,z : (q
(i)
l,x,y,C , ybz) → (q

(i)
j ,MVR)

to M+ for all admissible choices of z ∈ Γ∗
i ∪ (Γ∗

i · $). Further, we
take

ω+(t̂l,x,y,C,b,z) = ωi(C) · ωi(tq′,yb),

where ωi(C) is the weight associated to the computation C of Mi.

Finally, if Mi contains the transition

tq′,$ : (q
′, $) → Restart,

then we add the transitions

t̂l,x,$,C : (q
(i)
l,x,$,C , $) → Restart
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to M+, where we take

ω+(t̂l,x,$,C) = ωi(C) · ωi(tq′,$).

This completes the proof also for the case that M1 and M2 are RRWW-
automata.

Based on the above proof, the next result is easily obtained.

Theorem 4.3.2 ([OW16]). For all alphabets Σ, all commutative semirings
S, and all types X of restarting automata, the class of functions F(X,Σ, S) is
closed under the operation of scalar multiplication.

Proof. Let S be a semiring, let M be a restarting automaton of some type X
with input alphabet Σ, and let ω be a weight function for M . For each input
w ∈ Σ∗, we have

fM
ω (w) =

∑
C∈CM (w)

ω(C),

where CM(w) is the set of all accepting computations of M on input w, and
ω(C) is the product of the weight of all transitions that are used in the accept-
ing computation C. Let t1, t2, . . . , tn be the transitions that are used during
the computation C, then ω(C) = ω(t1) · ω(t2) · . . . · ω(tn).

For s ∈ S, we define a new weight function ωs as follows:

ωs(t) =

{
s · ω(t), if t is an accept transition,

ω(t), otherwise.

As each computation C ∈ CM(w) uses exactly one accept transition, which
ends the current computation, it follows that ωs(C) = ω(t1)·ω(t2)·. . .·s·ω(tn).
Further, as S is commutative, we see that

ωs(C) = s · ω(t1) · ω(t2) · . . . · ω(tn)
= s · ω(C),

which implies that

fM
ωs
(w) = s ·

( ∑
C∈CM (w)

ω(C)

)

= s · fM
ω (w)

holds.
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For each w(R)RWW-automaton M = (M,ω), Theorem 4.3.2 also holds
for semirings that are not commutative. Let M′ = (M ′, ω′) be a w(R)RWW-
automaton that first places a marking on the tape by replacing the prefix
ca1a2 of the input w = a1a2w

′ by a special symbol of the form [a1, a2], and
ω′ assigns the weight s ∈ S to this rewrite transition. Then, on seeing the
symbol [a1, a2] M

′ simulates the computations of M starting from the con-
figuration q0c[a1, a2]w

′$, and these transitions are assigned the same weight
as the corresponding part of the computation of M , which can be done us-
ing the technique from the proof of Theorem 4.3.1. It follows that for each
computation C = {t1, t2, . . . , tn} ∈ CM(w)

ω′(C) = s · ω(t1) · ω(t2) · . . . · ω(tn)
= s · ω(C).

Hence, for all w ∈ Σ∗ fM ′
ω′ (w) = s · fM

ω (w) holds. From this observation
and from Theorem 4.3.1 we see that the sets of functions F(RWW,Σ, S) and
F(RRWW,Σ, S) are semi-modules over S (see, e.g., [SS78]). Finally, we derive
the following additional closure property.

Theorem 4.3.3 ([OW16]).
For all alphabets Σ and all semirings S, F(RWW,Σ, S) and F(RRWW,Σ, S)
are closed under the operation of Cauchy product.

Proof. Let S = (S,+, ·, 0, 1) be a semiring, let Σ be a finite alphabet, letM1 =

(Q1,Σ,Γ1, c, $, q
(1)
0 , k1, δ1) and M2 = (Q2,Σ,Γ2, c, $, q

(2)
0 , k2, δ2) be RWW- or

RRWW-automata with input alphabet Σ, and let ω1 and ω2 be weight func-
tions that map the transitions of M1 and of M2 to S. In order to prove that
F(RWW,Σ, S) is closed under the operation of Cauchy product, we construct
an RWW- or RRWW-automatonMc with input alphabet Σ and a weight func-
tion ωc such that

fMc
ωc

(w) = (fM1
ω1

· fM2
ω2

)(w) =
∑
w=uv

(
fM1
ω1

(u) · fM2
ω2

(v)
)

holds for all w ∈ Σ∗. To simplify this construction we can assume that M1

and M2 perform accept transitions only on the right sentinel $, which can be
done by using special states and additional move-right steps.

On input w ∈ Σ∗, the automaton Mc first guesses a factorization w = u · v
of w. This will be realized in the first cycle by replacing the last symbol a of
the prefix u and the first symbol b of the suffix v by an auxiliary symbol of the
form [a, b] for a, b ∈ Σ. In order to choose the factorization w = λ · w or w =
w ·λ, the first two symbols a1 and a2 or the last two symbols b1 and b2 of w are
replaced by the auxiliary symbol [c, a1, a2] or [b1, b2, $], respectively. As after
a restart step Mc cannot remember that it has already chosen a factorization
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of w, it may find that it has chosen two (or more) factorizations. In that case,
the corresponding computation halts immediately without accepting.

After having guessed a factorization w = u ·v,Mc simulates a computation
of M1 on the prefix u, where the special symbol of the form [a, b] serves as the
right end marker. If this computation of M1 is accepting, then Mc replaces
the special symbol [a, b] by a new symbol of the form [+, b], it deletes all
letters to the left of this symbol in subsequent cycles, and then it simulates
a computation of M2 on the suffix v. Finally, Mc accepts if this computation
of M2 is also accepting. In the same way as in the proof of Theorem 4.3.1, we
can define some auxiliary symbols and additional transitions for Mc to enable
it to perform the above simulations. The special symbols of the form [a, b],
[+, b], [c, a1, a2], or [b1, b2, $] can be dealt with using the same techniques.

It follows that, for each factorization w = u · v, for each accepting com-
putation of M1 on input u, and for each accepting computation of M2 on
input v, the automaton Mc has exactly one accepting computation. By as-
signing weight 1 to all the transitions that are used in the guessing phase and
to all transitions that are used in the phase between the simulation of M1

and the simulation of M2, by assigning weight ω1(t1) to all transitions of Mc

that correspond to a transition t1 of M1, and by assigning weight ω2(t2) to all
transitions of Mc that correspond to a transition t2 of M2, it can be shown
that the equality

fMc
ωc

(w) = (fM1
ω1

· fM2
ω2

)(w) =
∑
w=uv

(
fM1
ω1

(u) · fM2
ω2

(v)
)

holds for all input words w ∈ Σ∗.

4.4 Concluding Remarks

We have introduced the weighted restarting automaton in order to express and
study quantitative aspects of restarting automata and their computations.
First, we have seen that all polynomials and finite sums of polynomials and
exponential functions can be realized by wRWW-automata. Further, we have
also studied the functions of the form f̂M

ω : N → S for a linearly ordered
semiring S, and an upper bound for their growth is established. Finally,
we have investigated the closure properties of the classes of functions that
are represented by wRWW- and wRRWW-automata, and these results are
summarized in Table 4.1.

We see that it is still open whether or not the classes F(RWW,Σ, S) and
F(RRWW,Σ, S) are closed under the operation of pointwise multiplication.
Further, it is also unknown whether the classes F(X,Σ, S) are closed under
the above operations also for the types of restarting automata that cannot use
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F(RWW,Σ, S) F(RRWW,Σ, S)

Pointwise Addition
√ √

Pointwise Multiplication ? ?
Cauchy-Product

√ √
Scalar Multiplication

√ √

Table 4.1: Summay of closure properties of functions that are represented by
wRWW- and wRRWW-automata for all input alphabets Σ and semirings S.

auxiliary symbols. Finally, for all types of restarting automata, it remains to
characterize the classes of functions F(X,Σ, S) and F̂(X,Σ, S) in a syntactic
manner.
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Chapter 5

Relations Computed by
Weighted Restarting Automata

Originally, weighted restarting automata have been introduced to study quan-
titative aspects of computations of restarting automata. If we consider the
special case that words over a given (output) alphabet are assigned as weights
to the transitions of a restarting automaton, then the automaton can be ex-
tended to define a mapping from the words over its input alphabet into the
semiring of formal languages over a given (output) alphabet. It means that
each weighted restarting automaton computes a relation between input words
and output words.

Actually, some extensions of restarting automata to transducers have been
introduced over the years, and many authors have studied the relations com-
puted in terms of these variants of restarting automata. First, a characteristic
language or a proper language can be transformed into a relation by splitting
the alphabet into an input and output part, and by using a projection onto
the input and output alphabets (see, e.g., [MOP09, Ott10]). Let M be a
restarting automaton with tape alphabet Γ and input alphabet Σ ⊆ Γ. Recall
that a word w ∈ Γ∗ is called a sentential form that may consist of input and
auxiliary symbols, and w is accepted by M , if there is an accepting compu-
tation which starts from the restarting configuration q0cw$. By LC(M) we
denote the characteristic language of M that consists of all sentential forms
accepted by M . It is easily seen that L(M) = LC(M) ∩ Σ∗. Further, let
PrΣ : Γ∗ → Σ∗ be the projection that is defined as a → a for each a ∈ Σ and
A → λ for each A ∈ Γ � Σ. Then, the language LP (M) = PrΣ(LC(M)) is
called the proper language of M . Let Σ = Σ′ ∪Δ, where Σ′ and Δ are input
and output alphabets, respectively, and we assume that Σ′ and Δ are disjoint.
Based on the characteristic language and proper language ofM , we define the
input/output relation

Relio(M) = { (u, v) ∈ Σ′∗ ∪Δ∗ | ∃w ∈ L(M) : u = PrΣ
′
(w) and v = PrΔ(w) },
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and the proper relation

RelP (M) = { (u, v) ∈ Σ′∗∪Δ∗ | ∃w ∈ LC(M) : u = PrΣ
′
(w) and v = PrΔ(w) }.

We see that with M two relations can be associated.
Parallel communicating systems of restarting automata (PC-systems for

short) have been introduced in [VO12]. Further, a special model of PC-systems
is given in [HOV10], where such a system consists of two det-mon-RRWW-
automata (M1,M2). Given an input of the form (w1, w2), M1 processes w1 as
the input for the whole system, and M2 processes w2 as the output. If both
automata accept, we say that the PC-system accepts this word pair (w1, w2).
In addition, a restarting transducer has been introduced in [HO12], which is
a restarting automaton that produces an output word for each restart and
accept transition. Obviously, each restarting transducer can be simulated by
a weighted restarting automaton, and we will describe restarting transducers
in Section 5.1.1 in detail.

The purpose of this chapter is to study the classes of relations that are
computed by weighted restarting automata. This chapter consists of four
sections. First, in Section 5.1 we introduce some basic notions. Further, in
Section 5.2 we characterize the relation class artPDR that was already intro-
duced in Section 2.2.2 by the monotone restarting transducers that are allowed
to use auxiliary symbols. Then, in Section 5.3 we investigate the classes of
relations that are computed by monotone weighted restarting automata, both
in the deterministic and the nondeterministic cases. Finally, a summary and
some problems for future work are given in Section 5.4.

5.1 Definitions and Examples

First, we present the definition of the relation computed by a weighted restart-
ing automaton. Let M = (M,ω) be a weighted restarting automaton, where
M = (Q,Σ,Γ, c, $, q0, k, δ) is a restarting automaton, and ω is a weight func-
tion from the transitions of δ into a semiring S. Here we only consider the
case that S is the semiring S = (P(Δ∗),∪, ·, ∅, {λ}) of languages over Δ with
the operations of union and product, that is, the weight of a transition of M
can be any language over Δ. Let ACM(w) = {A1, A2, . . . , Am} be the set of all
accepting computations of M on input w. We assume that the computation
Ai ∈ ACM(w) (1 ≤ i ≤ m) uses the transitions ti,1, ti,2, . . . , ti,ni

of M . Then
the weight of a transition ti,j (1 ≤ j ≤ n) is a language ω(ti,j) = Li,j over Δ,

and the weight of the computation Ai is ω(Ai) = Li,1 · Li,2 · . . . · Li,ni
= L̂i ∈

P(Δ∗). Finally, fM
ω (w) = L̂1 ∪ L̂2 ∪ . . . ∪ L̂m ∈ P(Δ∗) is the language over

Δ that is associated by M to w, that is, fM
ω is a transformation from Σ∗

into P(Δ∗). If w /∈ L(M), then ACM(w) = ∅, and accordingly, fM
ω (w) = ∅.
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In this way, the weighted restarting automaton M = (M,ω) on Σ yields the
relation Rel(M) = { (u, v) | u ∈ L(M), v ∈ fM

ω (u) } ⊆ Σ∗ × Δ∗. By R(wX)
we denote the class of relations that are computed by weighted restarting
automata of type wX.

Actually, the above definition is very general as it allows to choose arbitrary
languages over Δ as weights for the transitions of M . Therefore, the general
model of weighted restarting automata is quite powerful, and below we will
introduce some more restricted types of weighted restarting automata.

Definition 5.1.1 ([WO16a]). A weighted restarting automaton M = (M,ω)
of type wX is called a finitely weighted restarting automaton (a wFINX-auto-
maton for short), if the weight function ω maps the transitions of M into a
semiring of the form S = (Pfin(Δ

∗),∪, ·, ∅, {λ}). It is called a word-weighted
restarting automaton (a wwordX-automaton for short), if the weight of each
transition t of M is of the form ω(t) = {v} for some v ∈ Δ∗.

It is rather obvious that R(wwordX) ⊆ R(wFINX) � R(wX) for each type
X of restarting automaton. In fact, for nondeterministic types of restarting
automata, we have the following result, which obviously does not hold for
deterministic types of restarting automata.

Proposition 5.1.1 ([WO16a]).
For all X ∈ {R,RR,RW,RRW,RWW,RRWW}, R(wwordX) = R(wFINX).

Proof. LetM1 = (Q1,Σ,Γ, c, $, q
(1)
0 , k, δ1) be an RRWW-automaton, let ω1 be a

weight function that maps each transition t ∈ δ1 to a finite set ω1(t) ∈ Pfin(Δ
∗),

and let M1 = (M1, ω1) be a wFINRRWW-automaton. We will construct a
wwordRRWW-automaton M2 = (M2, ω2) such that Rel(M1) = Rel(M2).

If ω1(t) = ∅ for some t ∈ δ1, then we can simply delete t from δ1, as for any
accepting computation A ∈ ACM1(w) ofM1 that uses transition t, ω1(A) = ∅,
which means that this computation does not contribute to the value fM1

ω1
(w).

Thus, in the following we can assume without loss of generality that ω1(t) is
a non-empty finite subset of Δ∗ for each transition t ∈ δ1.

Now we describe the construction ofM2 in detail. Let δ1 = {t1, t2, . . . , tm},
for each 1 ≤ i ≤ m, let ω1(ti) = {wi,1, wi,2, . . . , wi,ri}, where wi,j ∈ Δ∗ and 1 ≤
j ≤ ri, and let Ω1 =

⋃m
i=1 ω1(ti). As M2 is to be a wwordRRWW-automaton,

we will introduce ri copies of transition ti, one for each possible weight wi,j.
In addition, as a rewrite/restart transition ti always leads to the initial state,
and as an accept transition ti does not enter any state at all, we need to
distinguish between the ri copies of such a transition by realizing them using
different originating states. Below we define M2 = (M2, ω2). We take M2 =

(Q2,Σ,Γ, c, $, q
(2)
0 , k, δ2), where

Q2 = {q(2)0 } ∪ { q(w, ti, wi,j) | q ∈ Q1, w ∈ Ω1, i ∈ {1, 2, . . . ,m},
and j ∈ {1, 2, . . . , ri} } ∪ { qacc(w) | w ∈ Ω1 },
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and δ2 and ω2 are defined as follows, where we consider each transition t of
M1 in turn.

1. If t is a move-right transition of the form (q
(1)
0 , cu) → (ql,MVR), then

we add the following transitions to δ2:

t̂w,ti,wi,j
: (q

(2)
0 , cu) → (ql(w, ti, wi,j),MVR)

for all w ∈ ω1(t), 1 ≤ i ≤ m, and 1 ≤ j ≤ ri, that is, M2 guesses a
possible weight w ∈ ω1(t), a possible next transition ti, and a possible
weight wi,j ∈ ω1(ti). In addition, we take ω2(t̂w,ti,wi,j

) = {w}.

2. If t is an accept transition of the form (q
(1)
0 , cu) → Accept, then we add

the following transitions to δ2:

t̂mv,w : (q
(2)
0 , cu) → (qacc(w),MVR) for all w ∈ ω1(t),

t̂acc,w : (qacc(w), x) → Accept for all w ∈ ω1(t) and
all possible words x,

that is, M2 guesses a possible weight w ∈ ω1(t), enters a corresponding
state by making a move-right step, and accepts then. In addition, we
take ω2(t̂mv,w) = {λ} and ω2(t̂acc,w) = {w}.

3. If t is a rewrite transition of the form (q
(1)
0 , cu) → (ql, cv), then we add

the following transitions to δ2:

t̂w,ti,wi,j
: (q

(2)
0 , cu) → (ql(w, ti, wi,j), cv)

for all w ∈ ω1(t), 1 ≤ i ≤ m, and 1 ≤ j ≤ ri, that is, M2 guesses a
possible weight w ∈ ω1(t), a possible next transition ti, and a possible
weight wi,j ∈ ω1(ti). In addition, we take ω2(t̂w,ti,wi,j

) = {w}.
4. If t is a move-right transition of the form (q, u) → (ql,MVR), then we

add the following transitions to δ2:

tq(w,t,w′) : (q(w, t, w
′), u) → (ql(w

′, th, wh,s),MVR)

for all w ∈ Ω1, w
′ ∈ ω1(t), 1 ≤ h ≤ m, and 1 ≤ s ≤ rh, that is, M2

guesses a possible next transition th and a possible weight wh,s ∈ ω1(th).
In addition, we take ω2(tq(w,t,w′)) = {w′}.

5. If t is an accept transition of the form (q, u) → Accept, then we add the
following transitions to δ2:

tq(w,t,w′) : (q(w, t, w
′), u) → Accept for all w ∈ Ω1, w

′ ∈ ω1(t),

and we take ω2(tq(w,t,w′)) = {w′}.
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6. If t is a rewrite transition of the form (q, u) → (ql, v), then we add the
following transitions to δ2:

tq(w,t,w′) : (q(w, t, w
′), u) → (ql(w

′, th, wh,s), v)

for all w ∈ Ω1, w
′ ∈ ω1(t), 1 ≤ h ≤ m, and 1 ≤ s ≤ rh, that is, M2

guesses a possible next transition th and a possible weight wh,s ∈ ω1(th).
In addition, we take ω2(tq(w,t,w′)) = {w′}.

7. If t is a restart transition of the form (q, u) → Restart, then we add the
following transitions to δ2:

tq(w,t,w′) : (q(w, t, w
′), u) → Restart for all w ∈ Ω1, w

′ ∈ ω1(t),

and we take ω2(tq(w,t,w′)) = {w′}.
Thus, for each state q ∈ Q1, M2 contains states q(w, ti, wi,j) that indicate

that state q was entered by a transition of weight {w}, and that ti is the next
transition to be executed, and that its weight is to be {wi,j}. Of course, if
transition ti is not applicable in the next configuration, for example, as the
originating state of ti is different from q, then the corresponding computation
ofM2 gets stuck, that is, it halts without accepting. Now, if (u, v) ∈ Rel(M1),
thenM1 has an accepting computation A on input u such that v ∈ ω1(A). Let
t1, t2, . . . , tn be the transitions that are used during the computation A, and
then ω1(A) = ω1(t1) · ω1(t2) · . . . · ω1(tn). Further, let v = v1v2 . . . vn, where
v1 ∈ ω1(t1), v2 ∈ ω1(t2), . . . , vn ∈ ω1(tn). From the construction of M2 and
ω2, for each ti and vi ∈ ω1(ti) (1 ≤ i ≤ n), δ2 contains a transition t′i that
simulates ti, and ω2(t

′
i) = {vi}. Therefore, M2 has an accepting computation

A′ on input u such that ω2(A
′) = {v1v2 . . . vn} = {v}. Analogously, we can see

that if M2 has an accepting computation on input u which has weight {v},
then there exists an accepting computation A of M1 on input u such that
v ∈ ω1(A). Thus, it follows that Rel(M1) = Rel(M2).

Finally, if M1 is an RX-automaton for X ∈ {λ,W,WW}, then the above
construction of M2 can easily be adjusted to also yield an RX-automaton by
combining rewrite and restart transitions. Notice that no restart operation
can be executed in a restarting configuration, as each cycle must contain a
rewrite operation. This completes this proof.

In fact, the result above also holds for the corresponding versions of mono-
tone restarting automata. As all rewrite transitions of M2 that simulate a
rewrite transition t of M1 are executed in the same position as t, it is im-
mediate that M2 is monotone, if M1 is. If a relation R ⊆ Σ∗ × Δ∗ is the
graph of a partial function, that is, for each w ∈ Σ∗, the set of images
R(w) = { v ∈ Δ∗ | (w, v) ∈ R } has cardinality at most one, then the fol-
lowing result can be shown.
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Proposition 5.1.2 ([WO16a]). Let R ⊆ Σ∗ × Δ∗ be the graph of a par-
tial function. If R ∈ R(wX) for some type of restarting automaton X ∈
{R,RR,RW,RRW,RWW, RRWW}, then R ∈ R(wwordX), too. Furthermore,
this is also true for the corresponding deterministic and monotone versions of
restarting automaton of type X.

Proof. Let R ⊆ Σ∗×Δ∗ be a partial function such that R = Rel(M) for some
weighted restarting automaton M = (M,ω). If M is not a word-weighted
restarting automaton, then there is a transition t of M such that ω(t) ⊆ Δ∗

is not of cardinality 1.

If ω(t) = ∅, then ω(A) = ∅ for each computation of M that uses transi-
tion t. Accordingly, this computation does not contribute to the value fM

ω (u)
for any input u. Thus, we can simply delete this transition. By doing this
for all transitions of this form, we obtain a weighted restarting automaton
M1 = (M1, ω) that is a subautomaton of M of the same type as M such that
ω(t1) �= ∅ for all transitions t1 of M1 and Rel(M1) = Rel(M).

Now, if |ω(t1)| > 1 for a transition t1 of M1, then |ω(A)| > 1 for each
computation A of M1 that uses this transition. It follows that no accepting
computation of M1 must use this transition. Thus, we can simply delete this
transition. By doing this for all transitions of this form, we obtain a word-
weighted restarting automaton M2 = (M2, ω) that is a subautomaton of M,
that is of the same type as M, and for which Rel(M2) = Rel(M) holds.

In [Hun13] it is shown that for some types X and Y of restarting automata,
if X is a restricted type of Y and L(X) � L(Y), then this inclusion relation also
holds for the classes of relations that are computed by restarting transducers
of the corresponding types. For example, an RR-automaton is a restricted
version of an RRW-automaton, and L(RR) � L(RRW), thus the relation class
R(RR-Td) is a proper subclass of the relation class R(RRW-Td). The main
idea is to extend an X-automaton M to an X-transducer TM by assigning
the symbol 1 as the output to the accept transition and the symbol λ to all
other transitions, and then the language L(M) is also extended to a relation
Rel(TM), which can be seen as a semi-characteristic function for L(M). If we
choose a language L ∈ L(X)�L(Y), then there exists a restarting transducer
T of type X such that Rel(T ) = {(w, 1) | w ∈ L}, while the relation Rel(T ) is
not computable by any Y-transducer. This result can be carried over to the
classes of relations that are computed by weighted restarting automata, and
thus we obtain the following result.

Proposition 5.1.3. Let X,Y ∈ {R,RR,RW,RRW,RWW,RRWW}, and X is
a restricted type of Y. If L(X) � L(Y), then R(pX) � R(pY) for each prefix
p ∈ {w,wFIN,wword}.
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Now we present some examples of relations that are computed by weighted
restarting automata.

Example 5.1.1. Let M1 = (Q,Σ,Γ, c, $, q0, k, δ) be the det-mon-R-automaton
that is defined by taking Q = {q0}, Γ = Σ = {a}, and k = 2, where δ is
defined as follows:

t1 : (q0, ca) → (q0,MVR),
t2 : (q0, aa) → (q0,MVR),
t3 : (q0, a$) → (qr, $),
t4 : (qr, x) → Restart for all admissible x,
t5 : (q0, c$) → Accept.

It is easily seen that in each cycleM1 moves to the right end of the tape, and
on seeing the right sentinel $ it removes the last a-symbol and restarts. This
process is repeated all the way until the configuration c$ is reached. Therefore,
M1 accepts all input words that consist of a finite number of a-symbols, that
is, L(M1) = { an | n ≥ 0 }.

Let (Pfin(Δ
∗),∪, ·, ∅, {λ}) be the semiring of finite languages over Δ =

{c}, let ω1 be the weight function that assigns the set {c} to the move-right
transitions t1 and t3, and that assigns the set {λ} to all other transitions,
and let M1 = (M1, ω1). Then, a cycle from the restarting configuration cal$
contains l move-right steps, and thus this many c-symbols are produced as
weight during this cycle. Therefore, given an input word an, the weight of the
accepting computation is the set {cr}, where

r =
n∑

i=1

i =
1

2
(n+ 1)n.

It follows that

fM1
ω1

(w) =

{ {c 1
2
(n+1)n}, for w = an, n ≥ 0,

∅, for w �∈ L(M1),

and hence, Rel(M1) = { (an, c 1
2
(n+1)n) | n ≥ 0 }.

Example 5.1.2. Let M2 = (Q,Σ,Γ, c, $, q0, k, δ) be the det-mon-R-automaton
that is defined by taking Q = {q0, qr}, Γ = Σ = {a, b}, and k = 2, where δ is
defined as follows:

t1,x1 : (q0, cx1) → (q0,MVR) for all x1 ∈ Σ,
t2,x2x3 : (q0, x2x3) → (q0,MVR) for all x2, x3 ∈ Σ,
t3,x4 : (q0, x4$) → (qr, $) for all x4 ∈ Σ,
t4 : (qr, x) → Restart for all admissible x,
t5 : (q0, c$) → Accept.
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It is easily seen that M2 accepts all input words that consist of a finite
number of a- and b-symbols, that is, L(M2) = {w | w ∈ {a, b}∗ } = Σ∗.

Let (Pfin(Δ
∗),∪, ·, ∅, {λ}) be the semiring of finite languages over Δ = Σ =

{a, b}, and let ω2 be the weight function such that ω2(t3,x4) = {x4}, and all
other transitions have the weight {λ}, and let M2 = (M2, ω2). It follows easily
that

fM2
ω2

(w) =

{ {wR}, for w ∈ {a, b}∗,
∅, for w �∈ L(M1),

and hence, Rel(M2) = { (w,wR) | w ∈ {a, b}∗ }.
From Example 5.1.1 we see that a deterministic monotone word-weighted

R-automaton can already compute a relation that is not linearly bounded. By
Rlb(wX) we denote the class of linearly bounded relations in R(wX). Actually,
some examples of relations computed by weighted restarting automata are
already presented in Example 3.3.1 and 3.3.2.

5.1.1 Restarting Transducers

In this section we recall the notion of restarting transducer that was intro-
duced in [Hun13]. In analogy to finite transducers and pushdown transducers,
a restarting transducer is a restarting automaton that is equipped with an ad-
ditional output function which gives an output word for each restart and each
accept transition. Formally, a restarting transducer is defined by a 9-tuple
T = (Q,Σ,Δ,Γ, c, $, q0, k, δ), where Q is a finite set of states, Σ is an input
alphabet, Γ is a tape alphabet, Δ is an output alphabet, c, $ �∈ Γ are the left
and right markers of the tape, q0 ∈ Q is the initial state, k ≥ 1 is the size of
the read/write window, and

δ : Q× PC(k) → Pfin(Q× ({MVR} ∪ PC≤(k−1)) ∪ ({Restart,Accept} ×Δ∗))

is the transition function.
A configuration of T is described by a pair (αqβ, z), where αqβ is a config-

uration of the underlying restarting automaton and z ∈ Δ∗ is an output word.
Obviously, for an input word w ∈ Σ∗, the initial configuration is (q0cw$, λ).
A restarting configuration can be described by (q0cw

′$, v), where w′ ∈ Γ∗ and
v ∈ Δ∗ is the current output. Finally, an accepting configuration is of the
form (Accept, z), where z ∈ Δ∗ is an output word. Accordingly, an accepting
computation of T can be described as

(q0cw$, λ) �c
T (qi1cw1$, v1) �c

T . . . �c
T (qimcwm$, v1 · · · vm)

�∗
T (Accept, v1 · · · vmvm+1).

The relation that is computed by T is defined as

Rel(T ) = {(w, z) ∈ Σ∗ ×Δ∗ | (q0cw$) �∗
T (Accept, z)}.
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By R(X-Td) we denote the class of relations that are computed by restarting
transducers of type X. It is easily seen that restarting transducers are a special
type of word-weighted restarting automata.

We close this section with an example of a relation that is computed by a
restarting transducer.

Example 5.1.3. Let T1 = (Q,Σ,Δ,Γ, c, $, q0, k, δ) be an RR-Td, where Q =
{q0, qa, qb, qra, qrb , qrc}, Σ = Δ = Γ = {a, b, c}, k = 2, and δ is defined as follows:

t1 : (q0, ca) → (qra, c),
t2 : (qra,−) → (Restart, a),
t3 : (q0, cb) → (qrb , c),

t4,x1,x2 : (qrb , x1x2) → (qrb ,MVR) for x1, x2 ∈ {b, c},
t5,x : (qrb , x$) → (Restart, b) for x ∈ {b, c},
t6,x : (q0, cx) → (qa,MVR) for x ∈ {b, c},

t7,x1,x2 : (qa, x1x2) → (qa,MVR) for x1, x2 ∈ {b, c},
t8,x : (qa, xa) → (qra, x) for x ∈ {b, c},
t9 : (q0, cc) → (qb,MVR),
t10 : (qb, cc) → (qb,MVR),
t11 : (qb, cb) → (qrb , c),
t12 : (q0, cc) → (qrc , c),
t13 : (qrc , cc) → (qrc ,MVR),
t14 : (qrc , c$) → (Restart, c),
t15 : (q0, c$) → (Accept, λ).

It is easily seen that T1 accepts all the words over the alphabet Σ and it
proceeds as follows. First, T1 removes a-symbols from the input and produces
them in restart steps as output. Then, it proceeds to do the same for b- and
c-symbols of the input. Thus, the relation that is computed by T1 is Rel(T1) =
{ (w, a|w|ab|w|bc|w|c) | w ∈ {a, b, c}∗ }. For example, on the input word bccabbca,
T1 has the following accepting computation:

(q0cbccabbca$, λ) �∗
MVR (cbcqacabbca$, λ) �Rewrite (cbccqrabbca$, λ)

�Restart (q0cbccbbca$, a) �∗
MVR (cbccbbqaca$, a)

�Rewrite (cbccbbcqra$, a) �Restart (q0cbccbbc$, aa)
�Rewrite (cqrbccbbc$, aa) �∗

MVR (cccbbqrbc$, aa)

�Restart (q0cccbbc$, aab) �∗
MVR (ccqbcbbc$, aab)

�Rewrite (cccqrbbc$, aab) �MVR (cccbqrbc$, aab)
�Restart (q0cccbc$, aabb) �∗

MVR (ccqbcbc$, aabb)

�Rewrite (cccqrbc$, aabb) �Restart (q0cccc$, aabbb)
�c
T1

(q0ccc$, aabbbc) �c
T1

(q0cc$, aabbbcc)
�c
T1

(q0c$, aabbbccc) �Accept (Accept, aabbbccc).
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It is worth to note that T1 is nondeterministic, so that it can guess whether
there is still an a-symbol (or a b-symbol) on the tape when removing a b-symbol
(or a c-symbol)

Obviously, the relation Rel(M2) given in Example 5.1.2 can also be com-
puted by a restarting transducer. Every relation that is computed by a restart-
ing transducer is linearly bounded, as a restarting transducer outputs symbols
only during restart and accept steps, and any computation on an input of
length n contains at most n+ 1 such steps. This means that for a restarting
transducer T and for each pair (u, v) ∈ Rel(T ) (|u| �= λ), there is a constant
c, such that |v| ≤ c · |u|. Further, by Example 5.1.1 already a det-mon-wwordR-
automaton can compute a relation that is not linearly bounded. Hence, we
can easily establish the following proper inclusion.

Corollary 5.1.1.
For all X ∈ {R,RR,RW,RRW,RWW,RRWW}, R(X-Td) � R(wwordX).

In addition, as each rewrite step of a restarting transducer must be strictly
length-reducing, a restarting transducer is not able to produce an output
without consuming any input symbol. Therefore, the next result is obtained.

Corollary 5.1.2 ([Hun13]). There is no restarting transducer that computes
the relation R = {(λ, an) | n ≥ 0}.

5.2 Restarting Transducers and Pushdown Re-

lations

In this section we compare the classes of relations that are computed by
restarting transducers to each other, and we relate them to various types of
pushdown relations. First, we prove that mon-RWW-Tds and mon-RRWW-Tds
characterize the class artPDR by establishing the following two lemmas.

Lemma 5.2.1 ([WO16a]). artPDR ⊆ R(mon-RWW-Td).

Proof. Let R ⊆ Σ∗ × Δ∗ be the relation that is computed by the almost-
realtime PDT T = (P,Σ,Γ,Δ, p0, Z0, F, δ). We simulate T by a mon-RWW-Td
using a construction from [KMO10b].

Let l = max{ |γ| | ∃(p′, γ, v) ∈ δ(p, a, A) }, and let Γ′ = Γ′
1 ∪ Γ′

2, where
Γ′
1 = { (x, p) | x ∈ Γ+, |x| ≤ 2l, and p ∈ P } and Γ′

2 = { (y) | y ∈ Γ2l }. Thus,
a symbol (x, p) ∈ Γ′

1 encodes a word x ∈ Γ∗ of length at most 2l together with
a state p of T , while a symbol (y) ∈ Γ′

2 encodes a word y ∈ Γ∗ of length 2l.
Finally, let M = (QM ,Σ,Γ

′,Δ, c, $, q0, 4, δ′) be the RWW-Td that simulates T
as follows.
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In each cycleM simulates two steps of T , using a symbol from Γ′
1 to encode

the current state of T . Assume that an accepting computation of T on input
w = a0a1a2 . . . an begins by first applying the transition

(p1, B1 . . . Bm1C1, v1) ∈ δ(p0, a0, Z0)

and then the transition

(p2, Bm1+1 . . . Bm1+m2C2, v2) ∈ δ(p1, a1, C1).

As m1 < l and m2 < l, |B1 . . . Bm1Bm1+1 . . . Bm1+m2C2| < 2l. Accordingly,
starting with the input configuration corresponding to input w,M can execute
the rewrite step (q0, ca0a1a2) → (q0, c(xC2, p2)a2) (and then it must restart),
where x := B1 . . . Bm1Bm1+1 . . . Bm1+m2 , producing the output v1v2.

Assume that by executing the next two steps, the PDT T reaches the
configuration

(p4, a4 . . . an, B1 . . . Bm1Bm1+1 . . . Bm1+m2−1x1, v1v2v3v4),

that is, the input symbols a2a3 are read, the state changes to p4, the two top-
most symbols Bm1+m2C2 on the pushdown are replaced by the string x1 ∈ Γ≤2l,
and the output v3v4 is produced. If m1 +m2 − 1+ |x1| ≤ 2l, then M rewrites
(xC2, p2)a2a3a4 into (x′, p4)a4, where x′ = B1 . . . Bm1Bm1+1 . . . Bm1+m2−1x1. If
m1 +m2 − 1 + |x1| > 2l, then M rewrites (xC2, p2)a2a3a4 into (x′)(x′′, p4)a4,
where x′x′′ = B1 . . . Bm1Bm1+1 . . . Bm1+m2−1x1 and |x′| = 2l.

Continuing in this way it follows that the tape content of M is always of
the form

(x1)(x2) . . . (xi)(xi+1, p)ajaj+1 . . . an,

where (xi+1, p) ∈ Γ′
1, and (x1), (x2), . . . , (xi) ∈ Γ′

2
∗. Here (x1)(x2) . . . (xi)xi+1

encodes the current content of the pushdown of T , p is the current state
of T , and ajaj+1 . . . an is the suffix of the input that T still has to read.
As long as j < n − 1, M can simulate the next two non-λ-steps of T by
rewriting the factor (xi)(xi+1, p)ajaj+1. Let xi+1 = α1C. If the topmost
symbol C of the pushdown of T is replaced by the factor α2 after processing
the symbols ajaj+1, and |α1α2| > 2l, then M rewrites (xi)(xi+1, p)ajaj+1 into
(xi)(x

′
i+1)(xi+2, p

′), where x′i+1xi+2 = α1α2; if |α1α2| ≤ 2l, then M rewrites
(xi)(xi+1, p)ajaj+1 into (xi)(xi+2, p

′), where xi+2 = α1α2; if the factor xi+1

is popped from the pushdown after processing the symbols ajaj+1, then M
rewrites (xi)(xi+1, p)ajaj+1 into (xi+2, p

′).
If T executes a λ-step, then it changes its state, pops a symbol from the

pushdown, and produces an output syllable. However, each rewrite transition
of M must be length-reducing. In order to solve this problem, we must com-
bine up to 2l λ-steps of T (or several λ-steps together with the next or the
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next two non-λ-steps) into a single simulation step of M . Assume that on the
tape content

(x1)(x2) . . . (xi)(xi+1, p)ajaj+1 . . . an,

the computation of T continues by applying the following λ-steps

(q1, λ, v
′
1) ∈ δ(p, λ, C1),

(q2, λ, v
′
2) ∈ δ(q1, λ, C2),

...
(qs, λ, v

′
s) ∈ δ(qs−1, λ, Cs).

For simulating these λ-steps, we must distinguish between several cases.

1. If xi+1 = αCs . . . C2C1 for α = α′C ∈ Γ+, and C ∈ Γ, that is, s < |xi+1|,
we combine these λ-steps with the next two non-λ-steps. This means
that after executing the λ-steps above, the symbols C1, C2, . . . , Cs are
popped from the pushdown, and the topmost symbol on the pushdown
is C. Assume that the computation continues by first performing the
non-λ-transition

(qj, B1B2 . . . Br1C
′
1, vj) ∈ δ(qs, aj, C),

and then the non-λ-transition

(qj+1, Br1+1Br1+2 . . . Br1+r2−1C
′
2, vj+1) ∈ δ(qj, aj+1, C

′
1).

As r1 < l and r2 < l, |B1B2 . . . Br1+r2−1C
′
2| < 2l. It is also clear

that |α| < 2l. If |αB1B2 . . . Br1+r2−1C
′
2| < 2l, then M simulates the

transitions above by rewriting the four symbols (xi)(xi+1, p)ajaj+1 into
the factor (xi)(αB1B2 . . . Br1+r2−1C

′
2, qj+1); otherwise, M rewrites the

four symbols (xi)(xi+1, p)ajaj+1 into the factor (xi)(α1)(α2, qj+1), where
α1α2 = αB1B2 . . . Br1+r2−1C

′
2, and |α1| = 2l.

2. If there exists an index m such that xi+1 = Cm . . . C2C1, and xi =
αCs . . . Cm+1, where 1 ≤ m < s and α ∈ Γ+, that is, s > |xi+1|, we
combine the λ-steps above by rewriting the factor (xi)(xi+1, p) into the
symbol (α, qs). Analogously, if s > 2l, M can simulate these λ-steps by
two or more rewrite steps.

This simulation continues until either T rejects (and then M rejects as
well), or until j = n − 1 is reached. At that point M can detect whether
T will accept or reject, and it will then act likewise. It follows that M is
monotone, and that Rel(M) = R holds.

Lemma 5.2.2 ([WO16a]). R(mon-RRWW-Td) ⊆ artPDR.
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Proof. LetM = (Q,Σ,Γ,Δ, c, $, q0, k, δ) be a mon-RRWW-Td. Using the sim-
ulation technique from [JMPV99] it can be shown that M can be simulated
by a PDT T . Let cuqvw$ be a rewrite configuration in an accepting computa-
tion of M , and assume that M now executes the rewrite step (q′, v′) ∈ δ(q, v).
Then the next cycle starts from the restarting configuration q0cuv

′w$, and
as M is monotone, the next rewrite operation is performed within a suffix of
uv′w of length at most |vw|. Thus, the prefix uv′ can be stored on the push-
down of T , while the input contains the suffix w still unread. After performing
this rewrite step, the RRWW-Td M moves to the right. In order to simplify
the discussion, we assume without loss of generality that M only restarts and
produces its output at the right end of the tape. As T cannot scan its input
completely each time it simulates a rewrite step, it guesses the output z pro-
duced by M at the end of the current cycle, and it keeps the state q′ reached
by the above rewrite step and the output z guessed in its finite-state control.
When it processes the remaining part of w, it updates this state information.
Finally, when w has been processed completely, then T checks whether all the
states of M stored in its finite-state control correspond to restart steps and
to the corresponding output strings.

In fact, as M is monotone, it can be checked quite easily that T is almost-
realtime. Actually, whenever T executes a λ-transition, then this means that
it simulates a rewrite step ofM that has exactly the same right distance as the
previous rewrite step. As each rewrite step of M is strictly length-reducing,
this implies that the prefix of the tape inscription of M that is stored on the
pushdown of T is reduced in length, which means that T pops a symbol (or
several symbols) from its pushdown. In addition, whenever T simulates a
rewrite step of M , then it must remember the state q′ that M enters through
this rewrite step and the output z that M will produce in the current cycle.
Luckily, there are only finitely many pairs of the form (q′, z) of M , and hence,
T can actually store all the pairs occurring in the computation being simulated
in its finite-state control.

As R(mon-RWW-Td) ⊆ R(mon-RRWW-Td) obviously holds, Lemma 5.2.1
and 5.2.2 imply the next result.

Theorem 5.2.1. R(mon-RWW-Td) = R(mon-RRWW-Td) = artPDR.

In the following we consider the deterministic restarting transducers. We
will show that the class of (almost-realtime or linearly bounded) DPDF can
be characterized by det-mon-RWW-Tds. Again we prove this result through
two lemmas.

Lemma 5.2.3 ([WO16a]). artDPDF ⊆ R(det-mon-RWW-Td).
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Proof. As shown in the proof of Lemma 5.2.1, an almost-realtime PDT can be
simulated by a mon-RWW-Td. If the almost-realtime PDT is deterministic,
then the simulation can be performed by amon-RWW-Td that is deterministic,
too. This yields the inclusion above.

Lemma 5.2.4 ([WO16a]). R(det-mon-RWW-Td) ⊆ artDPDF.

Proof. As shown in the proof of Lemma 5.2.2, a mon-RRWW-Td M can be
simulated by a PDT T that is almost-realtime. Even if M is deterministic,
the simulation by T still requires some nondeterminism, as each time that T
simulates a rewrite step of M , it must guess (and remember) the output that
M will produce at the end of the corresponding cycle. However, if M is just
a det-mon-RWW-Td, then M restarts immediately after a rewrite step, which
means that in each cycle it also produces its output at that point. It follows
that M can be simulated by a DPDT that is almost-realtime.

The equality artDPDF = R(det-mon-RWW-Td) can be obtained because
of Lemmas 5.2.3 and 5.2.4. Further, recall that artDPDF = lbDPDF = DPDF
is given in Theorem 2.2.4. Hence, the next result can be established.

Theorem 5.2.2. artDPDF = lbDPDF = DPDF = R(det-mon-RWW-Td).

From Theorem 5.2.1 we have seen that the nondeterministic mon-RWW-
and mon-RRWW-Tds are equally expressive. However, for the corresponding
deterministic restarting transducers, this is not the case. To prove the fact that
the det-mon-RRWW-Td is strictly more expressive than the det-mon-RWW-Td,
we consider the following example function γ1 : {a, b, c, d}∗ → {a, b}∗ that is
defined as follows:

γ1(w) =

⎧⎨
⎩

ak, if w = akbkc, k ≥ 1,
bk, if w = akbkd, k ≥ 1,
undefined, otherwise.

Lemma 5.2.5 ([WO16a]). γ1 /∈ R(det-mon-RWW-Td).

Proof. Because of Theorem 5.2.2 it suffices to show that γ1 does not belong
to the class DPDF. We assume that there exists a well-behaved DPDT T that
computes γ1. Given an input of the form akbkx, where x ∈ {c, d}, T cannot
begin to produce non-empty output before it has scanned the symbol x. Thus,
T works in three phases:

1. First it processes the prefix akbk producing empty output.
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2. Then it reads the symbol x, possibly producing a prefix yr of its output
yk, where y = a, if x = c, and y = b, if x = d, and r is a constant.

3. Finally, T performs a sequence of λ-steps during which it produces the
remaining part yk−r of the output.

Now from T we can construct a DPDA A that works as follows. While reading
the prefix akbk, A simulates T step by step. When it encounters the symbol
x, then A enters a special state q2,x that indicates that the last two phases
of T ’s computation have been reached. From this state it is required to read
the word yr from its input tape, and then it continues to simulate the third
phase of T ’s computation, where instead of producing output yk−r, A expects
to read input yk−r. It follows that L(A) = { akbkcak, akbkdbk | k ≥ 1 }. As
this language is not context-free, we have a contradiction. This shows actually
that γ1 /∈ DPDF.

Based on Lemma 5.2.5 the following result can be obtained.

Theorem 5.2.3. R(det-mon-RWW-Td) � R(det-mon-RRWW-Td).

Proof. It is clear that γ1 can be computed by a det-mon-RRWW-Td, as such
a transducer may scan its tape completely in each cycle. Thus, it can remove
a factor ab, move to the end of the tape, and restart, producing an a-symbol
as output, if the last letter is a c-symbol, or producing a b-symbol as output,
if the last letter is a d-symbol.

5.3 Relations Computed by Monotone Weighted

Restarting Automata

In the previous section we have shown that the class of relations that are
computed by mon-RWW-Tds and mon-RRWW-Tds coincides with the rela-
tion class artPDR, and that the function class DPDF can be characterized by
det-mon-RWW-Tds, while det-mon-RRWW-Tds even compute some functions
that are not in DPDF. Here we study the question of whether (word-)weighted
RWW- and RRWW-automata that are monotone are more expressive than the
corresponding transducers.

We have seen that the det-mon-wwordR-automaton given in Example 5.1.1
already computes a relation that is not linearly bounded. Thus, we begin this
investigation by studying the relation between the classesRlb(mon-wwordRWW)
and R(mon-RWW-Td). For this purpose, let τ0 : {a, b}∗ → {a, b}∗ be the func-
tion τ0(w) = ww. As the domain of τ0 is the regular set {a, b}∗, and as its
range is the copy language Lcopy = {ww | w ∈ {a, b}∗ }, which is not even

89



5.3. Relations Computed by Monotone Weighted Restarting Automata

growing context-sensitive (see, e.g., [BO98, Lau88]), we see that τ0 is not a
pushdown relation. However, we have the following result.

Lemma 5.3.1 ([WO16a]). τ0 ∈ Rlb(det-mon-wwordRWW)

Proof. Let M0 = (M0, ϕ0) be the wwordRWW-automaton that is defined by
M0 = (Q,Σ,Γ, c, $, q0, 3, δ) and ϕ0 : δ → Pfin(Σ

∗), where Q = {q0, q1}, Σ =
{a, b}, Γ = Σ∪{ [c, d] | c, d ∈ Σ }, and δ and ϕ0 are given through the following
table, where c, d, e ∈ Σ:

t0 : (q0, c$) → Accept, ϕ0(t0) = {λ},
t1 : (q0, cc$) → Accept, ϕ0(t1) = {cc},
t2 : (q0, ccd) → (q1,MVR), ϕ0(t2) = {λ},
t3 : (q1, cde) → (q1,MVR), ϕ0(t3) = {c},
t4 : (q1, cd$) → [cd]$, ϕ0(t4) = {cd},
t5 : (q0, c[cd]$) → Accept, ϕ0(t5) = {cd},
t6 : (q0, cc[de]) → (q1,MVR), ϕ0(t6) = {λ},
t7 : (q1, c[de]$) → Accept, ϕ0(t7) = {cde}.

On input w ∈ Σ∗, |w| ≥ 2, M0 executes exactly one cycle and an accepting
tail. During the cycle it scans the input from left to right, and it encodes the
last two symbols an−1 and an into an auxiliary symbol of the form [an−1, an].
The weight of this cycle with respect to ϕ0 is just the word w. After the
rewrite/restart step, M0 scans its tape again from left to right and accepts on
seeing the suffix [an−1, an]$. This part of the computation has again weight
w. Hence, we see that M0 is deterministic and monotone, and that fM0

ϕ0
(w) =

ww = τ0(w), that is, Rel(M0) is the graph of the function τ0.

Let τab ⊆ {a, b}∗ × {c, d}∗ be the relation

τab = {(abn, cdn) | n ≥ 0}.

For the relation τab we have the following results.

Lemma 5.3.2. τab /∈ R(RRW-Td).

Proof. We assume that τab ∈ R(RRW-Td), that is, there exists an RRW-Td
T that computes the relation τab. Given an input of the form abn, T first
outputs a c-symbol, and then it outputs the symbol d n-times, which is the
number of b-symbols in the input. The main problem in doing this is the fact
that T has to remember that it has already produced a c-symbol. However,
as T is not able to use auxiliary symbols, in each cycle T can only replace the
window content u by a shorter string v that is from Σ∗, which means that the
initial tape content αuβ changes to αvβ. For the tape content αvβ, we must

90



Chapter 5. Relations Computed by Weighted Restarting Automata

distinguish between two cases. If αvβ is not of the form abn, that is, it does
not belong to the input language anymore, then T would also accept this word
as input, as αvβ ∈ Σ∗; if αvβ belongs to the input language, then T cannot
remember that it already produced a c-symbol in the previous cycles, so that
it would output more than one c-symbol, contradicting our assumption on
T .

Lemma 5.3.3. τab ∈ Rlb(det-mon-wwordR(1)).

Proof. In order to prove the above result, we construct a det-mon-wwordR(1)-
automaton M = (M,ω) for the relation τab. Actually, for each input of the
form abn, M just needs to execute an accepting tail and simply read the input
from left to right. When reading the prefix a, the associated weight is a c-
symbol, and when it scans the suffix bn of the input, the associated weight is
the syllable dn, which completes our proof.

The results above together yields the following proper inclusions.

Theorem 5.3.1 ([WO16a]). For all X ∈ {R,RR,RW,RRW,RWW,RRWW},

(a) R(mon-X-Td) � Rlb(mon-wwordX) � R(mon-wwordX),
(b) R(det-mon-X-Td) � Rlb(det-mon-wwordX) � R(det-mon-wwordX).

Proof. As already det-mon-wwordR-automata can compute relations that are
not linearly bounded as shown in Example 5.1.1, it is rather clear that the
second inclusions in (a) and (b) hold. Further, from Theorem 5.2.1 we know
that each relation that can be computed by a mon-RRWW-Td is also a push-
down relation. Since the relation Rel(M0) given in Lemma 5.3.1 is not a
pushdown relation, it follows that the first inclusions in (a) and (b) hold
for the types X ∈ {RWW,RRWW}. Finally, by Lemma 5.3.2 and 5.3.3, it
is immediate that the first inclusions in (a) and (b) also hold for the types
X ∈ {R,RR,RW,RRW}.

We now study the relation between the class R(mon-wRWW) and the
class R(mon-wRRWW), their linearly bounded versions, and their determin-
istic counterparts. It is well-known that the class of languages that are ac-
cepted by mon-RWW-automata coincides with the class of languages that are
accepted by mon-RRWW-automata, and this is also true in the deterministic
case (see, e.g., [JMPV99]). Does it also hold for the classes of relations that
are computed by weighted restarting automata of the corresponding types?
For answering this question, we consider the relation τ1 ⊆ {a, b, c}∗ × {d, e}∗
that is defined as follows

τ1 = { (alblcm, dmel) | l,m ≥ 1 }.
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Lemma 5.3.4 ([WO16a]). τ1 ∈ Rlb(det-mon-wwordRRWW).

Proof. In order to prove the above result, we construct a det-mon-wwordRRWW-
automaton M = (M,ω) such that Rel(M) = τ1. Let M proceed as follows.
Given an input of the form w = alblcm, M replaces the prefix aa by the
auxiliary symbol A, and then it moves to the suffix cm. All the transitions
used during this part of the computation have weight {λ}. Then it moves
across the suffix cm, where each of these move-right steps has weight {d}, and
finally it restarts on reaching the end marker $. This step has weight {λ}
again. Now it detects the initial symbol A, which tells M that the first cycle
has already been completed successfully. Thus, it now moves right to the
boundary between the prefix Aal−2 and the infix bl, deletes a factor ab, and
restarts. Here all steps used have weight {λ} but the rewrite step, which
has weight {e}. This continues until the prefix Abb is reached, which is then
replaces by B by a rewrite step of weight {ee}, and then M checks that the
remaining suffix of the tape content is of the form cm, and in the affirmative, it
halts and accepts. Here again all move-right and restart steps have weight {λ},
and so does the accept step. It follows thatM is a det-RRWW-automaton that
is monotone, and that the associated weight function ω yields Rel(M) = τ1.
Clearly τ1 is linearly bounded.

Lemma 5.3.5 ([WO16a]). τ1 /∈ R(mon-wRWW).

Proof. Assume that τ1 ∈ R(mon-wRWW), that is, there exists a mon-wRWW-
automaton M′ such that Rel(M′) = τ1. As τ1 is actually a (partial) func-
tion, Proposition 5.1.2 implies that there exists a mon-wwordRWW-automaton
M = (M,ω) such that Rel(M) = τ1, where M = (Q,Σ,Γ, c, $, q0, k, δ) is a
mon-RWW-automaton, and ω is a weight function that maps each transition
of M into a singleton. Interpreting the weight ω(t) of a transition as output,
we see that, for an input of the form alblcm, M first outputs the symbol d
m-times, which is the number of c-symbols in the input, and then it outputs l
e-symbols, which is the number of a- and b-symbols in the input.

As the language L = { alblcm | l,m ≥ 1 } is not regular, M needs to
execute rewrite steps in all its accepting computations on input alblcm, if l
is sufficiently large. For the position of the first rewrite step applied in an
accepting computation we must distinguish between two cases.

(1) Assume that the first rewrite step is applied within the suffix cm. While
processing this suffix, M can easily produce the output dm. Then M must
compare the syllables al and bl, and while doing so it should produce the
output el. For this purpose, M needs to perform rewrite steps within the
prefix albl, as the language L = { albl | l ≥ 1 } is not regular. However,
M is monotone, which means that the position of a rewrite step in a cycle
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cannot have a larger right distance than the rewrite step in the previous
cycle. If l is sufficiently large, M must reduce both the syllables al and bl

in order to compare them. In a cycle of a restarting automaton, there is a
unique rewrite configuration cxquy$, in which a rewrite step (q, u) → (q′, v)
is to be executed, and by such a rewrite step the configuration cxvq′y$ is
reached. In the following cycle, the left distance of the rewrite step can be
reduced at most by |u| − |v|, that is, the rewrite configuration is cx1px2vy$,
where x = x1x2 and |x2| ≤ |u| − |v|. Let k̂ = max{ |u| − |v| | t : (q, u) →
(q′, v) is a rewrite transition of M }. If l is much larger than k̂, M needs to
execute a series of rewrite steps to reduce the left distance, so that it can
perform rewrite steps within the syllable al and reduce it.

Assume that the left distance is 2l + r (0 ≤ r ≤ m), when M begins to
shorten the left distance. This means that during this process the syllable ablcr

has to be reduced by rewrite steps to a word aw that fits into the window
of M , where w ∈ Γ≤k−1. In order to compare the number of b-symbols to
the number of a-symbols, M must save the information on the number of b-
symbols by encoding it into the word w. Let wi be the code word representing
the number i. The word wi is replaced by the word wi+j in a rewrite step
which reduces the infix bl−i to bl−i−j, where 0 ≤ i ≤ l − 1, j ≥ 1, and
1 ≤ i + j ≤ l. Assume that in each rewrite step at most k′ b-symbols can
be removed for some constante 0 < k′ < k, and M needs n rewrite steps to
reduce the syllable bl to the word w, which means that there are n rewrite
configurations during this process. Let ij be the number of b-symbols that are
reduced in the j-th rewrite step. Now we can describe the process of reducing
the syllable bl by the following sequence

blw0 → bl−i1wi1 → bl−i1−i2wi1+i2 → . . .→ b0wl

for some 0 ≤ i1, i2, . . . , in ≤ k′ and i1 + i2 + . . . + in = l, where w = wl. It
is easily seen that each word in the above sequence is of the form bl−sws for
some integer 0 ≤ s ≤ l. As in each rewrite step during this process at least
one b-symbol needs to be removed, the word for storing the number of deleted
b-symbols is at most of length k− 1. However, there are at most |Γ|k−1 many
different words of length k− 1 representing the number of b-symbols. Choose
l > 1 to be a constant such that l > |Γ|k−1, and then there are two integers
i, j, 1 ≤ i < j ≤ l, such that wi = wj, but |bl−i| > |bl−j|. This means that the
stored information on the number of deleted b-symbols is incorrect. Assume
that j = i + s for some positive integer 1 ≤ s ≤ l − 1, and then M cannot
distinguish between bi and bi+s. Together with alblcm, M would also accept
the word albl

′
cm for some l �= l′, contradicting our assumption on M .

(2) Assume that the first rewrite step is applied within the prefix albl. From
the arguments above, it follows that the first rewrite step must be executed
within the syllable al or at the border between the syllables al and bl, that
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is, M first compares the syllable al to the syllable bl. There are two cases for
producing the output dmel.

(2.1) Assume that M already produces the output syllable el during the pro-
cess of comparing al to bl. As the output syllable el is preceded by the pre-
fix dm, M must already output the syllable dm before it starts to output
e-symbols. As shown in the proof of Theorem 4.2.1, the length of any compu-
tation of M on an input of length n is at most 1

2
(n+ 2)(n+ 3)− 1. It follows

that M can perform at most 1
2
(2l+2)(2l+3)− 1 steps, while it processes the

prefix albl. Choose r ≥ 1 to be a constant such that |v| ≤ r for all transitions t
of M and v ∈ ω(t), and choose m such that m > (1

2
(2l + 2)(2l + 3) − 1) · r.

Then M is not able to produce enough d-symbols, while it is processing the
prefix albl.

(2.2) Assume that M first records the number of a- and b-symbols during the
process of comparing al to bl, then it outputs the syllable dm while processing
the suffix cm, finally it outputs the syllable el according to the recorded number
of a- and b-symbols. If l is sufficiently large, in order to compare the syllable al

to bl, M has to shorten them, and at least one a-symbol and one b-symbol
are removed in each rewrite step. Hence, there are at most k − 2 symbols for
storing the information on the number of a- and b-symbols, that is, there are
at most |Γ|k−2 different words for storing this number. Let wi be the code
word representing the number i, and then w = wl, as the number of a- and
b-symbols is l. In analogy to Case (1), choose l > 1 to be a constant such that
l > |Γ|k−2. Then there is an integer 1 ≤ i ≤ |Γ|k−2 such that wl = wi. Assume
that i = l− s for some positive integer l−|Γ|k−2 ≤ s ≤ l− 1. Then M cannot
distinguish between alblcm and al−sbl−scm. This means that it will produce
dmel for the input al−sbl−scm, which is an incorrect number of e-symbols.

We have seen that, for an input of the form alblcm, M cannot correctly
produce the output dmel, contradicting our assumption on M .

It is rather clear that R(mon-wRWW) is contained in R(mon-wRRWW),
and R(det-mon-wRWW) is contained in R(det-mon-wRRWW). Thus, Lem-
mas 5.3.4 and 5.3.5 yield the following proper inclusions, as τ1 is actually a
(partial) function.

Theorem 5.3.2 ([WO16a]). For each prefix x ∈ {w,wFIN,wword},

(a) Rlb(det-mon-xRWW) � Rlb(det-mon-xRRWW),
(b) R(det-mon-xRWW) � R(det-mon-xRRWW),
(c) Rlb(mon-xRWW) � Rlb(mon-xRRWW),
(d) R(mon-xRWW) � R(mon-xRRWW).
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We remark that Theorem 5.3.2 is the first result that establishes a dif-
ference in the computational power between a model of the monotone RWW-
automaton and the corresponding model of the monotone RRWW-automaton.

The relation τ1 = { (alblcm, dmel) | l,m ≥ 1 } considered above is a
pushdown function that is not computed by any mon-wwordRWW-automaton.
On the other hand, the function τ0 is computed by a det-mon-wwordRWW-
automaton that is linearly bounded, but it is not a pushdown relation. Thus,
we have the following incomparability result.

Theorem 5.3.3 ([WO16a]). For each prefix x ∈ {w,wFIN,wword}, the classes
of relations Rlb(det-mon-xRWW) and Rlb(mon-xRWW) are incomparable to
the classes lbPDR and PDR with respect to inclusion.

Recall that the class of languages that are accepted by mon-RWW- and
mon-RRWW-automata coincides with the language class CFL, and that the
class of languages that are accepted by det-mon-RWW- and det-mon-RRWW-
automata coincides with the language class DCFL (see, e.g., [JMPV99]) . We
have seen that this result does not carry over to the classes of relations that
are computed by weighted restarting automata.

We now turn to the class of relations that are computed by mon-wRRWW-
automata. Let τ2 ⊆ {a, b, c}∗ × {d, e}∗ be the relation

τ2 = { (alblcm+rar, dmeldmer) | l,m, r ≥ 1 }.

Lemma 5.3.6 ([WO16a]). τ2 /∈ R(mon-wRRWW).

Proof. Assume that τ2 ∈ R(mon-wRRWW), that is, there is a mon-wRRWW-
automaton M′ such that Rel(M′) = τ2. As the relation τ2 is a partial func-
tion, by Proposition 5.1.2 it is also computed by a mon-wRRWW-automaton
M = (M,ω), where M = (Q,Σ,Γ, c, $, q0, k, δ) is a mon-RRWW-automaton,
and ω is a weight function that maps each transition of M into a singleton
over Δ = {d, e}. Interpreting the weight ω(t) ∈ {d, e}∗ of a transition t as
output, M first outputs the syllable dm, then el, then dm again, and finally er

given the word alblcm+rar as input.
As the exact value of m is unknown, M must first guess it, and produce

correspondingly many d-symbols. Further, after comparing the numbers of
a- and b-symbols and producing correspondingly many e-symbols, M must
again produce m d-symbols, that is, it must somehow remember this number.
We consider two cases for storing the guessed value of m.

(1) While moving right across the input syllable cm+r, M can guess the value
of m, and produce correspondingly many d-symbols. In order to remember
the number m, it can place a marking on the syllable cm+r before performing
the restart step. This means that M has already executed a rewrite step
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within the syllable cm+r before the prefix al has been compared to the infix bl.
However, M is monotone, and it must apply rewrite steps for comparing the
numbers of a- and b-symbols. In the proof of Lemma 5.3.5 it is shown that M
cannot do this successfully, if it has already performed a rewrite step within
the syllable cm+r.

(2) From the arguments above, M can only perform rewrites on the prefix al

or at the border between the syllables al and bl of the input before comparing
the number of a-symbols to the number of b-symbols. It follows that M can
only remember the guessed value of m by encoding it into the prefix albl

of the input. Since the information about the exponent l is lost during the
process of comparing the syllable al to the syllable bl (see the proof of Lemma
5.3.5), M must produce the output syllable el during this process. Further,
as the output syllable el is preceded by the prefix dm, the prefix dm of the
output must be produced before this process starts, which means that M can
only perform rewrites on the prefix albl of the input, while it produces the
output dm. However, as shown in the proof of Lemma 5.3.5, there are only
finitely many numbers that can be represented by a code word of a fixed length.
Accordingly, let hM(n) denote the maximum number that can be represented
by a code word of the length n for the restarting automaton M . If we choose
m > 1 to be a constant such that m > hM(2l), the information about the
guessed value of m cannot be correctly saved within the space covered by the
syllable albl, which is analog to Case (2) in the proof of Lemma 5.3.5. Hence,
if the number m is sufficiently large, then M cannot reproduce the syllable dm

again, which contradicts our assumption.

Clearly τ2 is a linearly bounded pushdown relation, too. Hence, from
Lemma 5.3.1 and Lemma 5.3.6 the following incomparability result follows.

Theorem 5.3.4 ([WO16a]). For each prefix x ∈ {w,wFIN,wword}, the classes
of relations Rlb(det-mon-xRRWW) and Rlb(mon-xRRWW) are incomparable to
the classes lbPDR and PDR with respect to inclusion.

5.3.1 Monotone Weighted Restarting Automata with
Window Size One

In this section we study the classes of relations that are computed by monotone
weighted restarting automata with window size one and compare them to
each other. A restarting automaton with window size one can only delete
the symbol in the window in a rewrite step. In this case RWW-and RRWW-
automata are equally expressive as R- and RR-automata, respectively, and
hence here we only consider mon-wR- and mon-wRR-automata.
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First, we begin this investigation by studying the inclusion relation be-
tween the classes R(mon-wR(1)) and R(mon-wRR(1)). Since an R-automaton
is a restricted version of an RR-automaton, by Proposition 5.1.3 we just need
to find a language L ∈ L(mon-RR(1)) � L(mon-R(1)) in order to prove the
properness of this inclusion. It is well-known that each language that is ac-
cepted by a mon-R(1)-automaton is regular (see, e.g., [Mrá01]). Further, a
mon-RR(1)-automaton can accept a language that is not regular, and the fol-
lowing language example is given in [KO12]:

L4 = {ambn | m = n or m+ 1 = n}.
As L4 ∈ L(mon-RR(1))�L(mon-R(1)) [HO12], it follows thatR(mon-wR(1)) �
R(mon-wRR(1)), and obviously this result carries over to the class of relations
that are computed by linearly bounded weighted restarting automata and
restarting transducers. Hence, the following results can be established.

Theorem 5.3.5. For each prefix x ∈ {w,wFIN,wword},
(a) R(mon-xR(1)) � R(mon-xRR(1)),
(b) Rlb(mon-xR(1)) � Rlb(mon-xRR(1)),
(c) R(mon-R(1)-Td) � R(mon-RR(1)-Td).

Actually, some results on the expressive power of restarting transduc-
ers with window size one are presented in [HO15]. Now we continue by
studying the inclusion relations between the classes R(mon-wwordR(R)(1)),
Rlb(mon-wwordR(R)(1)) andR(mon-R(R)(1)-Td). In fact, a det-mon-wwordR(1)-
automaton can already compute a relation that does not belong to the class
PDR. Let τ3 ⊆ {a,#}∗ × {c}∗ be the relation

τ3 = {((#a)n, c (n+1)(n+4)
2 ) | n ≥ 0}.

Lemma 5.3.7. R(det-mon-wwordR(1))� PDR �= ∅.
Proof. In order to prove the result above, we need to find a relation that
is computed by a det-mon-wwordR(1)-automaton, while it is not a pushdown
relation. Let M = (M,ω) be a det-mon-wwordR-automaton, where M =
({q0, qr}, {a,#}, {a,#}, c, $, 1, q0, δ), and the transition function δ is defined
as follows:

t1 : (q0, c) → (q0,MVR), t4 : (qr,−) → Restart,
t2 : (q0,#) → (q0,MVR), t5 : (q0, $) → Accept.
t3 : (q0, a) → (qr, λ),

Let ω be a weight function that assigns the set {c} to the transitions t1,t2 and
t5, and that assigns the set {λ} to the transitions t3 and t4.
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It is easily seen that M accepts all input words of the form w ∈ (#∗a#∗)∗.
In each cycle M processes the prefix of the tape c#na, producing the syl-
lable cn+1 as output, and then it deletes the a-symbol and restarts. If M
cannot see any a-symbol until it reaches the right sentinel $, then it accepts,
again producing a c-symbol. Obviously, for each input (#a)n, we obtain

that fM
ω ((#a)n) = {c (n+1)(n+4)

2 }. It is easily seen that the input language

{ (#a)n) | n ≥ 0 } is regular, while the output language { c (n+1)(n+4)
2 | n ≥ 0 }

ist not context-free. As the image of a regular language under a push-
down transducer is context-free (see, e.g., [GR66, GR68]), it follows that
Rel(M) /∈ PDR, which completes this proof.

By Lemma 5.3.3, we see that the relation τab can be computed by a
det-mon-wwordR(1)-automaton, while it cannot be computed by any RRW-Td.
This together with Lemma 5.3.7 yields the following proper inclusions.

Theorem 5.3.6.

(a) R(mon-R(1)-Td) � Rlb(mon-wwordR(1)) � R(mon-wwordR(1)),
(b) R(det-mon-R(1)-Td) � Rlb(det-mon-wwordR(1)) � R(det-mon-wwordR(1)),
(c) R(mon-RR(1)-Td) � Rlb(mon-wwordRR(1)) � R(mon-wwordRR(1)),
(d) R(det-mon-RR(1)-Td) � Rlb(det-mon-wwordRR(1)) � R(det-mon-wwordRR(1)).

In addition, from Lemma 5.3.7 the following incomparability result can
also be obtained.

Theorem 5.3.7. For each prefix x ∈ {w,wFIN,wword}, the classes of relations
R((det-)mon-xR(1)) and R((det-)mon-xRR(1)) are incomparable to the classes
lbPDR and PDR with respect to inclusion.

5.4 Concluding Remarks

We have studied the classes of (binary) relations that are computed by weighted
restarting automata that are monotone, both in the deterministic and the
nondeterminitic case. We have compared these classes to the classes of rela-
tions that are computed by corresponding versions of restarting transducers
and to some classes of pushdown relations. The inclusion results obtained
are summarized in the diagram in Figure 5.1. In particular, we have shown
that themon-RWW-Tds andmon-RRWW-Tds characterize the almost-realtime
pushdown relations artPDR, and that the det-mon-RWW-Tds characterize the
deterministic pushdown functions DPDF. Also we have seen that monotone
(word-) weighted RWW-automata are strictly weaker in computational power
than monotone (word-)weighted RRWW-automata, both in the deterministic
as well as in the nondeterministic case. These are the first results where it
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R(det-mon-wX) �� R(det-mon-wRX) �� R(mon-wRX) R(mon-wX)��

Rlb(det-mon-wX)

��

�� Rlb(det-mon-wRX)

��

�� Rlb(mon-wRX)

��

Rlb(mon-wX)

��

��

R(det-mon-RX-Td)
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�� R(mon-RX-Td)

��

PDR

R(det-mon-X-Td)
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��

��

R(mon-X-Td)

DPDF = lbDPDF artDPDF
��
artPDR

��
lbPDR

��

rtDPDF

��

��
rtPDR

��

Figure 5.1: Hierarchy of classes of (binary) relations that are computed by
the various types of monotone restarting transducers and (word-)weighted
restarting automata. X denotes the type of restarting automaton RWW, an
arrow denotes a proper inclusion, and classes that are not connected through
a sequence of arrows (or by trivial inclusion) are incomparable with respect
to inclusion.

has been shown that a version of the (nondeterministic) monotone RWW-
automaton differs in expressive power from the corresponding version of the
(nondeterministic) monotone RRWW-automaton. Of course, it remains to de-
rive a characterization of the classes of relations computed by these automata
in terms of other types of devices.

Finally, we have studied the classes of relations that are computed by
weighted monotone restarting automata with a window of size one, and the in-
clusion results obtained are summarized in the diagram in Figure 5.2. We have
seen that the classR(mon-wR(1)) is strictly contained in the classR(mon-wRR(1)),
and this is also true for the corresponding version of linearly bounded weighted
restarting automata and restarting transducers. Further, we have shown that
the classes R((det-)mon-wR(1)) and R((det-)mon-wRR(1)) are incomparable
to the classes lbPDR and PDR with respect to inclusion. However, the in-
clusion relation between the classes Rlb((det-)mon-wRR(1)) and lbPDR is still
open.
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R(mon-wR(1)) ��R(mon-wRR(1)) PDR

Rlb(mon-wR(1)) ��

��

Rlb(mon-wRR(1))

��

lbPDR

��

R(mon-R(1)-Td) ��

��

R(mon-RR(1)-Td) ��

��

artPDR

��

Figure 5.2: Hierarchy of classes of (binary) relations that are computed by
monotone (word-)weighted R- and RR-automata with window size one and the
corresponding versions of restarting transducers. An arrow denotes a proper
inclusion, a dashed line denotes an incomparability relation with respect to in-
clusion, and the inclusion relations between the classes that are not connected
through a sequence of arrows (or by trivial inclusion) are unknown.
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Chapter 6

Languages Accepted by
Weighted Restarting Automata

In the previous chapters, we studied the classes of functions and relations that
are computed by weighted restarting automata. The purpose of this chapter
is to introduce classes of languages that are accepted by weighted restarting
automata. We use weighted restarting automata to define classes of formal
languages by combining the acceptance condition of a restarting automaton
with a condition on the weight of its accepting computations.

Actually, there are already a number of studies on non-standard ways to
define formal languages instead of directly using automata and grammars. In
[Kam09] M. Kambites gives a finite automaton with a register that can store
an element of a given monoid or group, and the content of the register is used
as an acceptance condition. An input is accepted by such an automaton if
and only if the automaton accepts and the additional acceptance condition is
satisfied. Cavaliere and Leupold have introduced so-called observer systems
(see, e.g., [CL04, CL06]). An observer system translates the behaviour of
an automaton or a grammar into a readable output, and there is a relative
acceptance condition on this output. In addition, observer systems have also
been applied to restarting transducers (see, e.g., [LH15]).

Following the same fundamental idea, we extend weighted restarting au-
tomata to language acceptors [WO16b]. Recall that in a weighted restarting
automaton M = (M,ω), the weight function ω assigns an element of a given
semiring S as a weight to each transition of the restarting automatonM . The
product (in S) of the weights of all transitions that are used in a computation
then yields a weight for that computation, and the sum over all weights of all
accepting computations of M for a given input word w ∈ Σ∗ yields a value
from S. Thus, a partial function fM

ω : Σ∗ → S is obtained. By placing an
acceptance condition T on the value fM

ω (w), we can define a subset LT (M) of
the language L(M) that is accepted by M . In this way, a weighted restarting
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automaton can be used as a language acceptor, which accepts a sublanguage
of the language that is accepted by the underlying (unweighted) restarting
automaton.

Obviously, the acceptance conditions relative to different semirings are
not equally powerful. For example, the Boolean semiring ({0, 1},+, ·, 0, 1)
can easily be simulated by other semirings. Here we consider some semirings
over integers such as the tropical semiring Z∞ = (Z∞,min,+,∞, 0), and
the semiring of formal languages such as the context-free languages CFL(Δ)
and the regular languages REG(Δ) over a given finite alphabet Δ. In the
latter case we restrict our attention to the word-weighted restarting automata
introduced in Chapter 5. In this chapter we study the classes of languages
that are accepted by weighted restarting automata relative to the acceptance
conditions from various semirings and compare them to each other.

6.1 Definitions and Examples

The goal of this section is to present some basic notions and examples. We
begin with the following two definitions, which are the central notions of this
chapter.

Definition 6.1.1 ([WO16b]). Let M = (Q,Σ,Γ, c, $, q0, k, δ) be a restarting
automaton, let ω be a weight function from M into a semiring S, and let
M = (M,ω). For a subset T of S, LT (M) = {w ∈ L(M) | fM

ω (w) ∈ T } is
the language accepted by M relative to T , that is, a word w ∈ Σ∗ belongs to
the language LT (M) iff w ∈ L(M) and fM

ω (w) ∈ T 1.

Definition 6.1.2 ([WO16b]). Let X be a type of restarting automaton, let S
be a semiring, and let H be a family of subsets of S. Then

L(X, S,H) = {LT (M) | M is a weighted restarting automaton of type X
and T ∈ H }

is the class of languages that are accepted by weighted restarting automata of
type X relative to H.

Now we continue with some examples that illustrate our definitions.

Example 6.1.1. LetM1 = (Q,Σ,Γ, c, $, q0, k, δ) be the mon-R-automaton that
is defined by taking Q = {q0, qr}, Γ = Σ = {a, b}, and k = 4, where δ is defined

1Note that if the subset T is not recursive, then it is undecidable whether fM
ω (w) ∈ T

for an input w ∈ Σ∗.
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as follows:

t1 : (q0, caaa) → (q0,MVR), t7 : (q0, abb$) → (qr, b$),

t2 : (q0, aaaa) → (q0,MVR), t8 : (q0, abb$) → (qr, $),

t3 : (q0, aaab) → (q0,MVR), t9 : (q0, cab$) → Accept,

t4 : (q0, aabb) → (q0,MVR), t10 : (q0, c$) → Accept,

t5 : (q0, abbb) → (qr, bb), t11 : (q0, caab) → (q0,MVR),

t6 : (q0, abbb) → (qr, b), t12 : (q0, cabb) → (q0,MVR),

t13,x : (qr, x) → Restart for all admissible x.

It is easily seen that L(M1) = { ambn | 0 ≤ m ≤ n ≤ 2m }. Further, for anbn
and for anb2n, M1 has just a single accepting computation.

Let (REG(Δ),∪, ·, ∅, {λ}) be the semiring of regular languages over Δ =
{c, d}, and let ω1 be the weight function that is defined as follows:

ω1(ti) =

⎧⎨
⎩

{c}, if i = {5, 7, 9},
{d}, if i ∈ {6, 8},
{λ}, otherwise.

Finally, let M1 = (M1, ω1), and let

T1 = { {cm} | m ≥ 0 } ∪ { {dn} | n ≥ 0 }.

Then fM1
ω1

(w) ∈ T1 iff w ∈ L(M1), and |w|a = |w|b or 2 · |w|a = |w|b, which
yields

LT1(M1) = { anbn | n ≥ 0 } ∪ { anb2n | n ≥ 0 }.
It is known that the language LT1(M1) is not even accepted by any RW-
automaton [JMPV99]. Hence, we see that the notion of relative acceptance
increases the expressive power of R-automata.

Example 6.1.2. Let M2 = (Q,Σ,Γ, c, $, q0, k, δ) be the det-mon-R-automaton
that is defined by taking Q = {q0, qr}, Γ = Σ = {a, b, c}, and k = 3, where δ
is defined as follows:

t1 : (q0, caa) → (q0,MVR), t7 : (q0, cab) → (q0,MVR),

t2 : (q0, aaa) → (q0,MVR), t8 : (q0, ccc) → (q0,MVR),

t3 : (q0, aab) → (q0,MVR), t9 : (q0, ccc) → (q0,MVR),

t4 : (q0, abb) → (qr, b), t10 : (q0, cc$) → Accept,

t5 : (q0, abc) → (qr, c), t11 : (q0, cc$) → Accept,

t6 : (q0, ab$) → (qr, $), t12 : (q0, c$) → Accept,

t13,x : (qr, x) → Restart for all admissible x.
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It is easily seen that L(M2) = { ambmcn | m,n ≥ 0 }. Let Z∞ = (Z∞,min,+,∞, 0)
be the tropical semiring, and let ω2 be the weight function from the transitions
of M2 into the semiring Z∞ that is defined as follows

ω2(ti) =

⎧⎨
⎩

1, if i ∈ {4, 5, 6},
−1, if i ∈ {8, 9, 10, 11},
0, otherwise.

Let M2 = (M2, ω2), and let T2 = {0}. Then fM2
ω2

(w) ∈ T2 if and only if
w ∈ L(M2), and w must be of the form anbncn for n ≥ 0, that is,

LT2(M2) = { anbncn | n ≥ 0 }.

It is clear that LT2(M2) /∈ CFL. We see that by using the notion of relative
acceptance a det-mon-R-automaton can accept a language that is not context-
free.

Example 6.1.3. Let M3 = (M3, ω3) be the wwordRWW-automaton that works
exactly as the wRWW-automaton (M2, ω2) that is given in Example 3.3.2, and
then

fM3
ω3

(w) = {w1#w2# . . .#wn# | w = w1w
R
1 . . . wnw

R
n }.

Further, let

T3 = {X | X ∈ Pfin(Γ
∗) and |x|# = 2 for all x ∈ X }.

Then fM3
ω3

(w) ∈ T3 if and only if w ∈ L(M3), and all admissible factorizations
of w as w = w1w

R
1 w2w

R
2 . . . wnw

R
n satisfy the restriction that n = 2, that is,

LT3(M3) = {w ∈ Σ+ | w ∈ L(M3), all admissible factorizations of w
have length 2 }.

While L(M3) is context-free, it can be shown that LT3(M3) is not context-free.
For example, for m,n ∈ N, we have that w(m,n) = a2b2mb2ma2a2b2nb2na2 ∈
L(M3), and if m �= n, then w(m,n) has only a single admissible factorization,
which is of length two, but for m = n, it also has an admissible factorization
of length one. This observation together with the Ogden’s Lemma [Ogd68] can
now be used to prove that LT3(M3) is not context-free.

As shown in the examples above, for a weighted restarting automata M =
(M,ω), by placing a condition T on the value fM

ω (w), some words from the
language L(M) are filtered out. This result shows that the sublanguages of
the form LT (M) can be more complex than the language of the form L(M)
itself.
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6.2 On the Classes of Languages Accepted Rel-

ative to Some Semirings over Integers

First, we consider the languages that are accepted by weighted restarting
automata by using acceptance conditions relative to subsets of the tropical
semiring Z∞ = (Z∞,min,+,∞, 0). Our first result states that by using the
notion of acceptance relative to the family H0 = {{0}}, we can avoid auxiliary
symbols. For proving this result, we need the following technical lemma.

Lemma 6.2.1 ([WO16b]). For each (R)RWW-automaton M , there exists an
(R)RWW-automaton M ′ accepting only on empty tape such that L(M) =
L(M ′).

Proof. Let M = (Q,Σ,Γ, c, $, q0, k, δ) be an (R)RWW-automaton. We con-
struct an (R)RWW-automaton M ′ that simulates M as follows. In each cycle
M ′ first guesses whether to simulate a cycle of M or whether M has already
accepted.

(1) In the former case, another cycle is simulated, in which M ′ performs the
same move-right, rewrite, and restart steps as M . However, each accept tran-
sition ofM is simulated by a rewrite transition ofM ′ that replaces the content
of the window by a special symbol #, which indicates that the corresponding
computation of M has accepted. If during the simulation of a cycle of M , the
symbol # is encountered by M ′, then M ′ halts without accepting.

(2) In the latter case, on seeing the symbol #, M ′ simply erases all symbols
that are to the left of the symbol # in the window and restarts. If the
symbol # is not encountered, then M ′ halts without accepting. This process
is repeated until a tape content of the form c#α$ is reached, which M ′ then
deletes symbol by symbol from right to left. After deleting the last symbol,
M ′ halts and accepts. It should be clear that L(M) = L(M ′).

Theorem 6.2.1 ([WO16b]).
For all X ∈ {RRW,RW}, L(XW) ⊆ L(X,Z∞,H0).

Proof. Let M = (Q,Σ,Γ, c, $, q0, k, δ) be an RRWW-automaton with input
alphabet Σ. In order to prove the above inclusion, we construct a wRRW-
automaton M = (M ′, ω), where M ′ is an RRW-automaton, and ω is a weight
function from the transitions of M ′ to Z∞ such that L{0}(M) = L(M). By
Lemma 6.2.1, we can assume without loss of generality thatM always accepts
on empty tape. Let M ′ = (Q,Γ,Γ, c, $, q′0, k

′, δ′) be the RRW-automaton that
is obtained from M by simply taking all symbols as input symbols. For a
word x ∈ Γ∗, let |x|Γ�Σ denote the number of occurrences of symbols from the
set Γ�Σ in the word x, that is, the number of occurrences of auxiliary letters
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in x. Now we define the weight function ω as follows

ω(t) =

⎧⎨
⎩

|v|Γ�Σ − |u|Γ�Σ, for each rewrite transition t
of the form (q′, v) ∈ δ(q, u),

0, otherwise.

Then, for each accepting computation AC of M ′ on input w ∈ Γ+, ω(AC) is
the number of auxiliary symbols that are written onto the tape during this
computation minus the number of auxiliary symbols that are removed from
the tape during this computation. Since M ′ (just as M) always accepts on
empty tape, we see that ω(AC) = −|w|Γ�Σ. Hence, fM ′

ω (w) = 0 iff w does
not contain any auxiliary symbols, that is, L{0}(M) = L(M). In exactly the
same way an RWW-automaton can also be simulated by a wRW-automaton
relative to the subset {0}.

It remains open whether the inclusion above is a proper one. Now we
continue by considering the languages that are accepted by weighted restarting
automata relative to subsets of the semiring N×N, that is, the direct product
of the semirings N = (N,max,+,−∞, 0) and N = (N,+, ·, 0, 1). For each
(m,n), (m′, n′) ∈ N× N, the operations ⊕ and � are described as follows

(m,n)⊕ (m′, n′) = (max(m,m′), n+ n′),
(m,n)� (m′, n′) = (m+m′, n · n′).

Further, let Hexp be the family of subsets of the semiring N×N that is defined
as follows

Hexp = {{(n,m) ∈ N× N | n ≥ 1,m ≥ 2n−1}}.
It is well-known that the 3-satisfiability problem (3-SAT for short) is NP-
complete, and in [JLNO04] a specific encoding ϕ(α) of 3-SAT is given, where
α is a Boolean formula in conjunctive normal form of degree 3. Let N(α)
denote the number of satisfying assignments for the Boolean formula α, and
let L3SAT,half be the following language

L3SAT,half = {ϕ(α) | α ∈ 3-SAT, N(α) ≥ 2n−1,
where α contains the variables x1, x2, . . . , xn}.

Concerning the language L3SAT,half we have the following result.

Proposition 6.2.1 ([Wan17]). L3SAT,half ∈ L(RWW,N× N,Hexp).

Proof. Recall that there exists an RWW-automaton M that accepts the lan-
guage L3SAT that contains the encoded words of the form ϕ(α) of 3-SAT
[JLNO04]. Given an input of the form ϕ(α) of a Boolean formula α in con-
junctive normal form of degree 3, M guesses a truth assignments ψ for each
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variable occurring in α, and it simply verifies whether ψ(α) evaluates to the
truth value 1. Let ω be a weight function that is defined as follows. When
guessing the value of a variable, ω assigns the weight (1, 1) to the correspond-
ing transition of M . If n is the number of variables in the given formula α,
then the computation part for guessing a truth assignment has the associated
weight (n, 1). Further, ω assigns (0, 1) to all other transitions of M , and thus
the weight of an accepting computation is the weight (n, 1). It follows that
fM
ω (ϕ(α)) = (n,m), where m is the number of accepting computations on the
input ϕ(α), i.e., the number of satisfying truth assignments for α. Finally,
if we take T = {(n,m) ∈ N × N | n ≥ 1,m ≥ 2n−1}, then it holds that
LT ((M,ω)) = L3SAT,half .

Actually, the problem of determining the number of satisfying truth as-
signments for a Boolean formula is a #P-complete problem (see, e.g., [Val79]).
Further, in [Ott06] it is shown that the language class L(RWW) is reducible in
linear time to the language class L(R) by using a further encoding technique.
This means that for each language L ∈ L(RWW), there exists an encoded
version L′ ∈ L(R) that can be obtained from L in linear time. It follows that
the result above can be extended to the class L(R,N × N,Hexp). Hence, we
see that by using the acceptance condition relative to subsets of the family
Hexp, even wR-automata can accept quite hard languages.

Now we continue with a closure property for the language classes of the
forms L(RRWW,Z∞,H) and L(RRWW,N × N,H). For this closure property
we need the following lemma.

Lemma 6.2.2. An RRWW-automaton is equivalent to an RRWW-automaton
that makes no rewrite step during a tail computation.

Proof. LetM be an RRWW-automaton. By Lemma 3.1.1 we can assume that
M makes a restart or an accept step only when it sees the right border marker
$ in its read/write window. We now construct an RRWW-automaton M ′ such
thatM ′ makes no rewrite step during a tail computation, and L(M ′) = L(M).

The automatonM ′ guesses after a restart step whether to simulate a cycle
or a tail of M . In the former case M ′ just executes move-right, rewrite,
and restart steps exactly as M ; in the latter case it executes move-right and
accept steps as M , and if the tail of M contains a rewrite step, then this can
be replaced by some move-right steps of M ′, and M ′ enters the corresponding
state that is reached through this rewrite step.

Theorem 6.2.2 ([Wan17]).
The language classes L(RRWW,Z∞,H) and L(RRWW,N × N,H) are closed
under the operation of reversal for each family H of subsets of Z∞ or N× N.

Proof. It is shown in [JLNO04] that the language class L(RRWW) is closed
under the operation of reversal, and here we just apply the same technique.
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Let M = (M,ω) be a wRRWW-automaton, where M = (Q,Σ,Γ, c, $, q0, k, δ)
is an RRWW-automaton with tape alphabet Γ, and ω is a weight function
from the transitions of M to the semiring N × N, and let T ∈ H. Without
loss of generality we assume that M performs a restart or an accept step
only when it sees the right border marker $ in its read/write window. This
can be realized by replacing any other restart transition by a move-right step
with the same weight as the corresponding restart step, and by assigning
the weight (0, 1) to all additional move-right steps. In order to prove this
closure property, we construct a wRRWW-automaton M′ = (M ′, ω′) and a
set T ′ ∈ H, where M ′ = (Q′,Σ,Γ, c, $, q′0, k

′, δ′) is an RRWW-automaton, and
ω′ is a weight function from the transitions of M ′ to the semiring N×N, such
that LT ′(M′) = LT (M)R.

Recall that the transition function of M can be described by a set of
meta-instructions of the form (c · E1, u → v, E2 · $) or (c · E0 · $,Accept),
where E0, E1 and E2 are regular languages, u, v ∈ Γ∗, and |v| < |u| [NO01].
For each meta-instruction of this form of M , let M ′ have a meta-instruction
(c ·ER

2 , u
R → vR, ER

1 · $) or (c ·ER
0 · $,Accept), where ER

i = {wR | w ∈ Ei} for
i ∈ {0, 1, 2}. This means that for a cycle C of M starting from a restarting
configuration q0cxuyz$, where C looks as follows:

q0cxuyz$ �∗
M cxqluyz$ �M cxvqmyz$

�∗
M cxvyqrz$ �M q0cxvyz$,

M ′ has to transform the configuration q′0cz
RyRuRxR$ into the configuration

q′0cz
RyRvRxR$. It remains to ensure that the weight of the cycle of M ′ sim-

ulating the cycle C is equal to ω(C). We assume that |x|, |y| ≥ k. Further,
let x = x1x2 . . . xn, let y = y1y2 . . . ys, let u = u1u2 . . . uk, where n, s ≥ k, and
let tMVR,1, tMVR,2, . . . , tMVR,k−1 are the last k− 1 move-right steps before the
rewrite step in the cycle C. It follows that the transitions tMVR,1, tMVR,2, . . .,
tMVR,k−1 are based on the window contents

xn−k+2xn−k+3 . . . xnu1,
xn−k+3xn−k+4 . . . xnu1u2,

...
xnu1u2 . . . uk−1,

respectively.

However, if M ′ simply performs the rewrite step uR → vR, then it cannot
execute the move-right steps that correspond to the transitions of tMVR,1,
tMVR,2, . . ., tMVR,k−1 of M , as after this rewrite step the read/write window
is placed immediately to the right of v. In addition, the last k − 1 move-
right steps of M ′, say t′MVR,1, t

′
MVR,2, . . . , t

′
MVR,k−1, before this rewrite step

108



Chapter 6. Languages Accepted by Weighted Restarting Automata

are based on the window contents

yk−1yk−2 . . . y1uk,
yk−2yk−3 . . . y1ukuk−1,

...
y1ukuk−1 . . . u2,

respectively, and the move-right transitions corresponding to them are not
executed during the cycle C.

In order to solve this problem, let M ′ be an RRWW-automaton with a
read/write window of size 2k, such that M ′ can simulate the rewrite step of
M in advance without performing the move-right steps t′MVR,1, t

′
MVR,2, . . .,

t′MVR,k−1. Further, M
′ stores the string uR within its finite-state control, and

we define ω′ such that it combines the sum of the weights of tMVR,1, tMVR,2,
. . ., tMVR,k−1 with the weight of the move-right transition after the rewrite step
(see the Case 8 in the proof of Theorem 4.3.1). For other transitions, let ω′

assign the same weights to these transitions as the corresponding transitions
of M .

By Lemma 6.2.2 we can assume that no tail computation of M contains
a rewrite step, that is, a tail computation consists of some move-right steps
and an accept step, and thus it can easily be simulated in an analogous way.
As both the semirings N = (N,max,+,−∞, 0) and N = (N,+, ·, 0, 1) are
commutative, the semiring N×N is also commutative. Hence, for each input
w, it holds that fM ′

ω′ (w) = fM
ω (wR). Finally, by taking T ′ = T , we obtain that

LT ′(M′) = LT (M)R.
As the tropical semiring Z∞ is commutative, using essentially the same

technique, this closure property can also be proved for the tropical semiring
Z∞.

Finally, we close this section with some results on the membership problem
of the language classes L(RRWW,Z∞,H) and L(RRWW,N× N,H).

Theorem 6.2.3. For a weighted restarting automaton M, and a subset T of
the tropical semiring Z∞, the membership problem for the language LT (M) is
solvable deterministically in time O(2n

2 · n2 · log n).
Proof. Let M = (M,ω) be a weighted restarting automaton over the tropical
semiring Z∞, and let T be a subset of Z∞. Actually, the time consumption
consists of the following two phases. The first phase is used for determining
whether w ∈ L(M), and in the second one it needs to be verified whether
fM
ω (w) ∈ T .
First, we consider the time consumption of the first phase. For each input

of length n, M can execute at most n cycle, and each cycle consists of at most
n steps (see, e.g., [Ott06]). Therefore, for each input w, it can be determined
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in square time whether w ∈ L(M) or not, which yields the nondeterministic
polynomial time bound O(n2), that is, it is solvable deterministically in time
O(2n

2
).

It remains to check whether fM
ω (w) ∈ T for a given input w. Let ACM(w)

be the set of accepting computations ofM on the input w, and then fM
ω (w) =

min{ω(AC) | AC ∈ ACM(w)}. In order to determine the minimal ω(AC) for
AC ∈ ACM(w), we need to compute the weight of each accepting computation
AC. It is rather clear that there exists a constant c such that |AC| ≤ c · n2,
and thus ω(AC) is the sum of at most c · n2 numbers. It follows that there
exists a constant d such that ω(AC) ≤ d · n2. As each addition operation
can be done in time O(log n), ω(AC) is computable in time O(n2 · log n). In
the proof of Theorem 4.2.1 it is shown that for each input of length n, the
maximal number of accepting computations is bounded by O(2n

2
). Hence, it

can be determined whether fM
ω (w) ∈ T for a given input w of length n in

time O(2n
2 · n2 · log n). It follows that the time bound for this membership

problem is

O(2n
2

) +O(2n
2 · n2 · log n) = O(2n

2 · n2 · log n).

Theorem 6.2.4. For a weighted restarting automaton M, and a subset T
of the semiring N × N, the membership problem for the language LT (M) is
solvable deterministically in time O(2n

2 · n2 · (log n)2).

Proof. Let M = (M,ω) be a wX-automaton over the semiring N × N, and
let T be a subset of N × N. In analogy to the previous proof, the time
consumption for determining whether w ∈ L(M) is bounded by O(2n

2
), and

thus we restrict our attention to the second phase. Given an input w, assume
that fM

ω (w) = (m1, n1), and if fM
ω (w) ∈ T , there exists a pair (m2, n2) ∈ T

such that m1 = m2 and n1 = n2. Since the operations of the semiring N =
(N,max,+,−∞, 0) are similar to those of the tropical semiring Z∞, m1 can
be computed in time O(2n

2 ·n2 · log n) as shown in the proof of Theorem 6.2.3.
In the following we consider the time consumption for computing n1.

For the semiring N = (N,+, ·, 0, 1), if AC is an accepting computation of
M , and ω(AC) = (mAC , nAC), then nAC is the product of the weights of the
transitions used during the computation AC. As shown above, there exists a
constant c such that |AC| ≤ c · n2, and thus nAC ≤ dn

2
for some constant d.

As each multiplication operation can be completed in time O((log n)2), nAC

can be computed in time O(n2 ·(log n)2). It follows that the time consumption
for computing all accepting computations is bounded by O(2n

2 · n2 · (log n)2).
Finally, as the sum of the weights of two accepting computations can be
computed in time O(n2), adding up the weights of all accepting computations
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can be done in time O(2n
2 ·n2). It follows that the time bound for computing

n1 is

O(2n
2 · n2 · (log n)2) +O(2n

2 · n2) = O(2n
2 · n2 · (log n)2).

Hence, the time consumption for the second phases is

O(2n
2 · n2 · log n) +O(2n

2 · n2 · (log n)2) = O(2n
2 · n2 · (log n)2),

which is also the time bound for both phases.

6.3 On the Classes of Languages Accepted by

Word-Weighted Restarting Automata

In this section we study the classes of languages that are accepted by weighted
restarting automata relative to subsets of a semiring of regular languages
REG(Δ) = (REG(Δ),∪, ·, ∅, {λ}). In general, the weight of a transition of a
restarting automaton M can be any regular language over Δ. However, here
we only consider word-weighted restarting automata that have been intro-
duced in Chapter 5. For these word-weighted restarting automata, we define
the following notion of relative acceptance.

Definition 6.3.1 ([WO16b]). Let M = (M,ω) be a wwordX-automaton with
input alphabet Σ, where ω maps the transitions of M to singleton sets over Δ.

(a) For a set T ∈ REG(Δ), L̂T (M) = {w ∈ L(M) | fM
ω (w) ∩ T �= ∅ } is the

language accepted by M relative to the set T , that is, a word w ∈ Σ∗

belongs to the language L̂T (M) iff w ∈ L(M) and fM
ω (w) contains at

least one element of T .

(b) Let H be a family of subsets of REG(Δ). Then

L̂(X,REG(Δ),H) = { L̂T (M) | M is a wwordX-automaton and T ∈ H}

is the class of languages that are accepted by wwordX-automata relative
to H.

For word-weighted restarting automata we have the following inclusion
result.

Lemma 6.3.1 ([WO16b]). For all X ∈ {R,RR,RW,RRW,RWW, RRWW},

L(nf-X) ⊆ L̂(X,REG(Δ),REG(Δ)).
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Proof. Let M = (Q,Σ,Γ, c, $, q0, k, δ) be a non-forgetting restarting automa-
ton of type X. In order to prove the above inclusion, we construct a wwordX-
automaton M′ = (M ′, ω) and we define a set T ∈ REG(Δ) such that L(M) =
L̂T (M′). The main problem in simulating M is the fact that, when ex-
ecuting a restart step, M can enter any state, while M ′ must return to
its initial state q0. To overcome this problem, for each restart transition
t : (q,Restart) ∈ δ(p, u) of M , the automaton M ′ will have a restart tran-
sition t′ : Restart ∈ δ′(p, u) with associated weight ω(t′) = {q}. Further,
when starting from a restarting configuration, M ′ guesses the state q of M
with which M begins the current cycle, and it then proceeds to simulate
the next cycle of M starting in this state. In addition, the corresponding
transition is given the weight {q}, which means that M ′ outputs its guessed
state again in the new cycle. If in each cycle, M ′ guesses the correct state
of M , then the weight of the resulting accepting computation of M ′ is of the
form {q0q1q1q2q2 . . . qnqn} for some q1, q2, . . . , qn ∈ Q and n ≥ 0. Accordingly,
we take Δ = Q and T = { q0q1q1q2q2 . . . qnqn | q1, q2, . . . , qn ∈ Q, n ≥ 0 }.
To realize the above simulation, we take M ′ = (Q′,Σ,Γ, c, $, q0, k, δ′), where
Q′ = Q ∪ { (q, q1, q2) | q, q1, q2 ∈ Q }, and the transition relation δ′ and the
weight function ω are defined as shown below:

1. First, in order to allow M ′ to guess the state with which M begins the
current cycle, δ′ contains the transition t′ : ((p, q, q′), op) ∈ δ′(q0, cu)
with associated weight {q} for each transition t : (p, op) ∈ δ(q, cu) of
M and each q, q′ ∈ Q. In a state of the form (p, q, q′), the first state
component p is the current state of M , the second component q is the
guessed state with which the current cycle of M begins, and the third
component q′ is the guessed state that M will enter through the next
restart step (if any).

2. In a state of the form (p, q, q′),M ′ proceeds just asM proceeds in state p,
leaving state components 2 and 3 untouched, until it reaches a restart
transition. All these move-right, rewrite and accept steps of M ′ have
weight {λ}.

3. Finally, for each restart transition of the form (q′,Restart) ∈ δ(q, u), δ′

contains the transitions tq1 : Restart ∈ δ′((q, q1, q′), u) for all q1 ∈ Q,
which all have weight {q′}.

For an input w ∈ Σ∗, M ′ may have many more accepting computations
than M . In fact, in general, L(M ′) will be a proper superset of L(M). How-
ever, fM ′

ω (w) ∩ T �= ∅, iff M ′ has an accepting computation AC on input w
such that ω(AC) ∈ T , that is, ω(AC) is of the form q0q1q1q2q2 . . . qnqn. This
means that within this computation, M ′ always guesses the correct state af-
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ter each restart step, which shows that AC is the correct simulation of an
accepting computation of M . It follows that L̂T (M) = L(M).

In fact, also the converse inclusions hold.

Lemma 6.3.2 ([WO16b]). For all X ∈ {R,RR,RW,RRW,RWW, RRWW},
L̂(X,REG(Δ),REG(Δ)) ⊆ L(nf-X).

Proof. Let Δ be a finite alphabet, let M = (M,ω) be a wwordX-automaton,
where M = (Q,Σ,Γ, c, $, q0, k, δ) is a restarting automaton of type X, and ω
is a weight function that assigns to each transition of M a subset of Δ∗ of
cardinality one, and let T ∈ REG(Δ). In order to prove the above inclusion we
provide a non-forgetting restarting automatonM ′ of type X such that L(M ′) =
L̂T (M). For each w ∈ Σ∗, we have w ∈ L̂T (M) iff w ∈ L(M) and fM

ω (w)∩T �=
∅. As the set T is regular, there exists a DFA A = (QA,Δ, δA, q

A
0 , FA) such

that L(A) = T , where QA is a finite set of states, Δ is the input alphabet
for A, δA : QA×Δ → QA is the transition function, qA0 is the initial state, and
FA is a set of accepting states. For an input w ∈ Σ∗, M ′ has to check whether
w ∈ L(M) and whether fM

ω (w) ∩ L(A) �= ∅. Therefore, M ′ needs to simulate
both M and A simultaneously. Accordingly, each state of M ′ is a pair [p, q],
where p ∈ Q and q ∈ QA, and when simulating a step of M , M ′ needs to
ensure that A has a transition that is applicable to the weight of this step.
As it is non-forgetting, M ′ can always remember the actual state of A, even
after executing a restart step. If M accepts, then M ′ also accepts, provided
that A reaches a final state by reading the weight of the current accept step.

Now we describe the non-forgetting restarting automaton M ′ in detail.
Let M ′ = (Q′,Σ,Γ, c, $, q′0, k, δ

′) be a non-forgetting restarting automaton of
type X that is defined by taking Q′ = {[p, q] | p ∈ Q, q ∈ QA}, q′0 = [q0, q

A
0 ],

and the transition function δ′ is as described below.

1. First we define some transitions that allow M ′ to simulate move-right
steps of M . If δ contains a move-right transition of the form

t : (p, u) → (q,MVR)

for some p, q ∈ Q and ω(t) = {u′}, and if δ∗A(z, u
′) �= ∅ for some z ∈ QA,

then δ′ contains the transition

([p, z], u) → ([q, δ∗A(z, u
′)],MVR).

2. Next we define some transitions that allow M ′ to simulate rewrite steps
of M . If δ contains a rewrite transition of the form

t : (p, u) → (q, v)
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for some p, q ∈ Q and ω(t) = {u′}, and if δ∗A(z, u
′) �= ∅ for some z ∈ QA,

then δ′ contains the transition

([p, z], u) → ([q, δ∗A(z, u
′)], v).

3. Now we define those transitions that allow M ′ to simulate restart steps
of M . If δ contains a rewrite transition of the form

t : (p, u) → Restart

for some p ∈ Q and ω(t) = {u′}, and if δ∗A(z, u
′) �= ∅ for some z ∈ QA,

then δ′ contains the transition

([p, z], u) → ([q0, δ
∗
A(z, u

′)],Restart).

4. Finally, we define those transitions that allow M ′ to simulate accept
steps of M . If δ contains an accept transition of the form

t : (p, u) → Accept

for some p ∈ Q and ω(t) = {u′}, and if there exists q ∈ FA such that
q ∈ δ∗A(z, u

′) for some z ∈ QA, then δ
′ contains the transition

([p, z], u) → Accept.

It is easily seen that L(M ′) = L̂T (M), which completes this proof.

Together, Lemmas 6.3.1 and 6.3.2 yield the following characterization.

Theorem 6.3.1 ([WO16b]). For all X ∈ {R,RR,RW,RRW, RWW,RRWW},
L(nf-X) = L̂(X,REG(Δ),REG(Δ)).

It is well-known that the classes of languages that are computed by (nf-)
mon-RWW- and (nf-)mon-RRWW-automata coincide with the class of context-
free languages (see, e.g., [MO06, JMPV99]). Based on this result a character-
ization of the class CFL of context-free languages in terms of word-weighted
restarting automata can be derived. Hence, the following equalities can be
established.

Theorem 6.3.2.

CFL =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L(mon-RWW)
L(mon-RRWW)
L(nf-mon-RWW)
L(nf-mon-RRWW)

L̂(mon-RWW,REG(Δ),REG(Δ))

L̂(mon-RRWW,REG(Δ),REG(Δ))

114



Chapter 6. Languages Accepted by Weighted Restarting Automata

We have seen that by using an acceptance condition relative to subsets
of the semiring of regular languages, the expressive power of mon-RWW-
and mon-RRWW-automata cannot be increased. Further, this type of accep-
tance condition can also be used to replace restarting automata with auxil-
iary symbols by automata without auxiliary symbols, as a nf-RRW-automaton
(or a nf-RW-automaton) can easily simulate the computations of an RRWW-
automaton (or an RWW-automaton). Hence, the following result can be es-
tablished.

Corollary 6.3.1. For X ∈ {RRW,RW}, L(XW) ⊆ L̂(X,REG(Δ),REG(Δ)).

In the following we continue with some closure properties of the language
class L̂(X,REG(Δ),REG(Δ)).

Theorem 6.3.3 ([WO16b]). The class L̂(X,REG(Δ),REG(Δ)) is closed under
the operation of union for each X ∈ {R,RR,RW,RRW,RWW,RRWW}.

Proof. Let M1 = (M1, ω1) and M2 = (M2, ω2) be wwordX-automata, and let
T1, T2 ∈ REG(Δ). By Theorem 6.3.1, there exist non-forgetting restarting
automata M ′

1 and M ′
2 of type X such that L(M ′

1) = LT1(M1) and L(M ′
2) =

LT2(M2). Thus, in order to prove the above closure property, it suffices
to construct a non-forgetting restarting automaton M of type X such that
L(M) = L(M ′

1) ∪ L(M ′
2). At the start, M nondeterministically chooses an

index i ∈ {1, 2}, and then it simply works exactly like M ′
i . As M is non-

forgetting, it can store its guess within its finite-state control. If M ′
i accepts,

then M also accepts. Thus, M accepts on input w iff at least one of M ′
1 or

M ′
2 accepts on input w. It follows that L(M) = L(M ′

1) ∪ L(M ′
2).

In [JLNO04] it is shown that the language classes L(RWW) and L(RRWW)
are closed under the operation of concatenation. This result also holds for the
class of languages that are defined by word-weighted restarting automata.

Theorem 6.3.4 ([WO16b]). The class L̂(X,REG(Δ),REG(Δ)) is closed under
the operation of concatenation for each X ∈ {RWW,RRWW}.

Proof. The proof for RWW- and RRWW-automata given in [JLNO04] proceeds
as follows. On input a word w, a factorization w = uv is guessed such that
u is accepted by the first automaton and v is accepted by the second. To fix
this guess, the last symbol a of u and the first symbol b of v are rewritten into
a special symbol [a, b], and then the first automaton is simulated on u. If and
when it accepts, then the second automaton is simulated on v. In the same
way, we can proceed for nf-RWW- and nf-RRWW-automata. By Theorem 6.3.1
this yields the intended closure property for L̂(X,REG(Δ),REG(Δ)).
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Now we return to the operation of reversal. In [JLNO04] it is shown that
the class of languages that are accepted by RRWW-automata is closed under
reversal. As the proof carries over to nf-RRWW-automata, we immediately
obtain the following result from Theorem 6.3.1.

Theorem 6.3.5 ([WO16b]). The class L̂(RRWW,REG(Δ),REG(Δ)) is closed
under the operation of reversal.

Finally, we close this section with a result on the membership problem of
the language class L̂(X,REG(Δ),REG(Δ)).

Theorem 6.3.6. For a weighted restarting automaton M of type X, and
a subset T ∈ REG(Δ), the membership problem for the language L̂T (M) is
solvable nondeterministically in time O(n2).

Proof. Let M be a wwordX-automaton over the semiring REG(Δ), and let
T ∈ REG(Δ), then L̂T (M) ∈ L̂(X,REG(Δ),REG(Δ)). By Theorem 6.3.1,
there exists a non-forgetting restarting automaton M ′ of type X such that
L(M ′) = LT (M). By Theorem 6.2.3, we know that for each input word w, it
can be determined whether w ∈ L(M ′) with the nondeterministic time bound
O(n2).

6.4 A Stronger Restriction for Word-Weighted

Restarting Automata

A word w ∈ Σ∗ is an element of the language L̂T (M) for a word-weighted
restarting automaton M = (M,ω) and a set T ∈ REG(Δ), if w ∈ L(M) and
the weight ω(AC) is an element of T for at least one accepting computation
AC of M on input w. Thus, there may be other accepting computations of
M on this very input that have an associated weight that does not belong to
the set T . The following definition requires that ω(AC) must belong to T for
each accepting computation AC of M on input w.

Definition 6.4.1 ([WO16b]). Let M = (M,ω) be a wwordX-automaton with
input alphabet Σ, where ω maps the transitions of M to singleton sets over Δ.
For a set T ⊆ Pfin(Δ

∗), LT (M) = {w ∈ L(M) | fM
ω (w) ∈ T } is the language

strongly accepted by M relative to the set T , that is, a word w ∈ Σ∗ belongs
to the language LT (M) iff w ∈ L(M) and fM

ω (w) is an element of T .

Actually, this definition is exactly in the spirit of Definition 6.1.1. Indeed,
let S be the semiring of formal languages over Δ. For a wwordX-automaton
M = (M,ω) and an input w ∈ Σ∗, the value fM

ω (w) is a finite subset of Δ∗.
Thus, it suffices to consider subsets of S that consist of finite languages.
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Accordingly, if T is a collection of finite subsets of Δ∗, then an input word
w ∈ Σ∗ belongs to the language LT (M) iff w ∈ L(M) and fM

ω (w) is an element
of T .

We now consider the language class of the form L(X,Pfin(Δ
∗),H). In gen-

eral, this class is quite rich, and the following result can be established.

Proposition 6.4.1. For each language L over the alphabet Σ, there exists
a stl-det-mon-wwordR(1)-automaton M and a subset T ⊆ Pfin(Σ

∗) such that
LT (M) = L, that is, L ∈ L(stl-det-mon-R(1),Pfin(Σ

∗),H) for some family H

of subsets of Pfin(Σ
∗).

Proof. Let L be a language over the alphabet Σ, and let M = (M,ω) be
a stl-det-mon-wwordR(1)-automaton that proceeds as follows. For each input
w ∈ Σ∗, M just moves to the right end of the tape, and it accepts on seeing
the right border marker $. The weight of each reading step on the word w is
the set of the current symbol that is in the read/write window of M , and the
reading step on the left border marker c and the accept step on the right border
marker $ have the associated weight {λ}. It is easily seen that M accepts all
input words over the alphabet Σ, that is, L(M) = Σ∗, and fM

ω (w) = {w} for
all w ∈ Σ∗. Further, we take T = { {w} | w ∈ L }, which means that if w ∈ L,
then fM

ω (w) = {w} ∈ T . Hence, it follows that LT (M) = L.

In the following we compare the language class of the form L(X,Pfin(Δ
∗),H)

to the languages classes that are introduced in the previous sections. However,
we see that in the way described in the proof of Proposition 6.4.1 any language
can be accepted by a stl-det-mon-R(1)-automaton, which is the simplest type
of restarting automaton. Therefore, we consider some restricted families of
subsets from various semirings:

1. Hz
fin denotes the family of finite sets of integers.

2. HN
fin denotes the family of finite sets of natural numbers.

3. H
cfl(Δ)
fin denotes the family of sets of finite languages over some finite

alphabet Δ such that, for each T ∈ H
cfl(Δ)
fin ,

⋃
V ∈T

V ∈ CFL(Δ).

4. H
reg(Δ)
fin denotes the family of sets of finite languages over some finite

alphabet Δ such that, for each T ∈ H
reg(Δ)
fin ,

⋃
V ∈T

V ∈ REG(Δ).

First, we start by investigating the inclusion relations between the lan-
guage classes L(X,Z∞,Hz

fin) and L(X,Pfin(Δ
∗),Hcfl(Δ)

fin ), and between their

subclasses L(X,N∞,HN
fin) and L(X,Pfin(Δ

∗),Hreg(Δ)
fin ), where X is a type of

restarting automaton.
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Theorem 6.4.1. For all X ∈ {R,RR,RW,RRW,RWW,RRWW},

(a) L(X,Z∞,Hz
fin) ⊆ L(X,Pfin(Δ

∗),Hcfl(Δ)
fin ),

(b) L(X,N∞,HN
fin) ⊆ L(X,Pfin(Δ

∗),Hreg(Δ)
fin ).

Proof. First, we prove the inclusion (a). LetM = (M,ω) be a wX-automaton,
and let T ∈ Hz

fin. For this proof we will construct a word-weighted restarting

automaton M′ of type X and a subset T ′ ∈ H
cfl(Δ)
fin such that LT ′(M′) =

LT (M).
Let M′ = (M ′, ω′) be a word weighted restarting automaton, where M ′

simply works exactly like M , and the weight function ω′ over the output
alphabet Δ = {a, b} is defined below. For each transition t of M ,

ω′(t) =
{ {a|ω(t)|}, if ω(t) ≥ 0,

{b|ω(t)|}, otherwise.

In this way, given an input word w, for each accepting computation AC(w)
of M with associated weight ω(AC(w)) = i ∈ Z∞, there exists a word u ∈ Δ∗

such that ω′(AC(w)) = {u} and |u|a − |u|b = i. However, there may be other
accepting computations on the word w, and fM

ω (w) = min{ω(AC) | AC ∈
ACM(w) }. This implies that for all u ∈ fM ′

ω′ (w), |u|a − |u|b ≥ i, and there
exists a word u′ ∈ fM ′

ω′ (w) satisfying |u′|a − |u′|b = i. Now we define the set

T ′ =
⋃
i∈T

{V | V ∈ Pfin({w | |w|a − |w|b ≥ i for w ∈ Δ∗ })
and ∃w ∈ V : |w|a − |w|b = i }.

It is easily seen that each set V of T ′ is finite, and min{ |u|a − |u|b | u ∈
V } = i for some i ∈ T . For each w ∈ Σ∗, if w ∈ L(M) and fM

ω (w) = i ∈ T ,
then M′ has an accepting computation with weight {u} for some u ∈ Δ∗

satisfying |u|a−|u|b = i, and there is no accepting computation with a weight
{u′} such that |u′|a − |u′|b < i. This means that there is a finite set in T ′ that
coincides with the set fM ′

ω′ (w), and it follows that w ∈ LT ′(M′). Finally, it
should be obvious that⋃

V ∈T ′
V = {w | |w|a − |w|b ≥ i for w ∈ Δ∗ and i = minT } ∈ CFL(Δ),

and thus T ′ ∈ H
cfl(Δ)
fin .

In an analogous way, the inclusion (b) can also be obtained.

Actually, following the same fundamental idea, the above inclusions can
also be shown if the tropical semirings Z∞ and N∞ are replaced by the so-called
arctic semirings (Z,max,+,−∞, 0) and (N,max,+,−∞, 0), respectively. In
Section 6.3 the language class L̂(X,REG(Δ),REG(Δ)) has been introduced,
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and in the same way, we can also define the language class L̂(X,CFL(Δ),CFL(Δ)).
We continue by comparing the language class of the form L(X,Pfin(Δ

∗),H) to
the language classes L̂(X,REG(Δ),REG(Δ)) and L̂(X,CFL(Δ),CFL(Δ)). As
a deterministic restarting automaton has at most one accepting computation
on each input, the following equivalences can be obtained immediately.

Corollary 6.4.1. For all X ∈ {R,RR,RW,RRW,RWW,RRWW},
(a) L̂(det-X,REG(Δ),REG(Δ)) = L(det-X,Pfin(Δ

∗),Hreg(Δ)
fin ),

(b) L̂(det-X,CFL(Δ),CFL(Δ)) = L(det-X,Pfin(Δ
∗),Hcfl(Δ)

fin ).

For the nondeterministic case we have the following inclusion result.

Theorem 6.4.2 ([Wan17]). For all X ∈ {R,RR,RW,RRW,RWW,RRWW},
(a) L̂(X,REG(Δ),REG(Δ)) ⊆ L(X,Pfin(Δ

∗),Hreg(Δ)
fin ),

(b) L̂(X,CFL(Δ),CFL(Δ)) ⊆ L(X,Pfin(Δ
∗),Hcfl(Δ)

fin ).

Proof. First, we prove the inclusion (a). Let L ∈ L̂(X,REG(Δ),REG(Δ)), then
there exist a wwordX-automaton M = (M,ω) und a set T ∈ REG(Δ) such that
L̂T (M) = L. Further, let M′ = (M ′, ω′) be a wwordX-automaton that simply
works exactly as M, and let the set

T ′ = {V1 ∪ V2 | V1 ∈ Pfin(T )� {∅}, V2 ∈ Pfin(T )},
where T = Δ∗ � T . It is clear that T ′ ∈ H

reg(Δ)
fin , as

⋃
V ∈T ′

V = Δ∗ ∈ REG(Δ).

If w ∈ L̂T (M), then M accepts on the input w, and fM
ω (w) contains at

least one word from the set T , that is, 1 ≤ |fM
ω (w)∩T |. Let V1 = fM

ω (w)∩T ,
and let V2 = fM

ω (w) � T . By the above definition of T ′, V1 ∪ V2 ∈ T ′ can be
obtained. It follows that fM

ω (w) ∈ T ′, and hence w ∈ LT ′(M′). On the other
hand, if w ∈ LT ′(M′), then w ∈ L(M ′) and fM ′

ω′ (w) ∈ T ′. Further, by the
definition of T ′, we obtain fM ′

ω′ (w) ∩ T �= ∅. Hence, the word w also belongs

to L̂T (M).
Along the same line, the inclusion (b) can also be shown.

By Theorem 6.4.2, we obtain that a word-weighted restarting automa-
ton with the stronger acceptance condition can simulate the computations of
a non-forgetting restarting automaton of the corresponding type. It is still
open whether the above inclusions are proper. We now consider the following
language

Lcopy = {uu | u ∈ Σ∗ }.
Note that up to now it has not yet been shown that the language Lcopy can
be accepted by a nf-RR-automaton. However, using the stronger acceptance
notion of word-weighted restarting automata, we have the following positive
result.
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Proposition 6.4.2 ([Wan17]). Lcopy ∈ L(R,Pfin(Δ
∗),Hreg(Δ)

fin ).

Proof. In order to prove this result, we will construct a wwordR-automaton
M = (M,ω) and a subset T ∈ H

reg(Δ)
fin such that LT (M) = Lcopy. Let

M = (Q,Σ,Σ, c, $, q0, 2, δ) be an R-automaton, where Q = {q0} ∪ {qr,x, qr,x̂ |
x ∈ Σ ∪ {@}}, and the transition function δ is defined as follows:

t1,x : (q0, cx) → (q0,MVR) for all x ∈ Σ,
t2,x : (q0, cx) → (qr,x, c) for all x ∈ Σ,
t2,@̂ : (q0, cx) → (qr,@̂, c) for all x ∈ Σ,

t3,x1x2 : (q0, x1x2) → (q0,MVR) for all x1, x2 ∈ Σ,
t4,x̂ : (q0, x$) → (qr,x̂, $) for all x ∈ Σ,
t4,@ : (q0, x$) → (qr,@, $) for all x ∈ Σ,
t5 : (q0, c$) → Accept,
t6,x : (qr,x, u) → Restart for all x ∈ {a, â | a ∈ Σ ∪ {@}},

and all admissible u.

It is easily seen that M accepts all words w ∈ Σ∗. Further, let the alphabet
Δ = Σ ∪ {â | a ∈ Σ} ∪ {@, @̂}, and let ω be the weight function over Δ that
is defined as follows:

ω(t2,x) = {x} for all x ∈ Σ,

ω(t2,@̂) = {@̂},
ω(t4,x̂) = {x̂} for all x ∈ Σ,
ω(t4,@) = {@},
ω(t) = {λ} for all other transitions t ∈ δ.

Obviously, given an input word of the form uu ∈ Σ∗, where u = a1a2 . . . an
there are always two accepting computations with associated weights of the
forms {a1@a2@ . . . an@} and {@̂ân@̂ân−1 . . . @̂â1}. This implies that M re-
moves the first symbol of the first u and the last symbol of the second u, al-
ternatingly. Let T1 = {{a1@a2@ . . . an@, @̂ân@̂ân−1 . . . @̂â1} | a1, a2, . . . , an ∈
Σ}, and then for each w ∈ Lcopy, f

M
ω (w) contains a set from T1. As there

are also accepting computations with the weights that do not belong to
any set from T1, we define the following sets. Let T ′

1 =
⋃

V ∈T1

V , and let

T2 = Δ∗ � T ′
1. Further, let T = {V1 ∪ V2 | V1 ∈ T1, V2 ∈ Pfin(T2)}. Obviously,

w ∈ Lcopy if and only if fM
ω (w) ∈ T , and hence LT (M) = Lcopy. Finally,

as
⋃

V ∈T
V = Δ∗ ∈ REG(Δ), it follows that T ∈ H

reg(Δ)
fin , which completes this

proof.

Although it is not yet proved that Lcopy /∈ L(nf-RR), we conjecture that it is
true, as without auxiliary symbols a restarting automaton cannot remember
its guess for the border between the prefix and suffix. Hence, we give the
following conjecture.
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Conjecture 6.4.1.
For each X ∈ {R, λ}, L̂(XR,REG(Δ),REG(Δ)) � L(XR,Pfin(Δ

∗),Hreg(Δ)
fin ).

Now we turn to the closure properties of the classes of languages that are
accepted by word-weighted restarting automata with the stronger acceptance.
We begin with the following important closure property.

Theorem 6.4.3 ([WO16b]). Let M1 = (M1, ω1) and M2 = (M2, ω2) be
wwordX-automata, where X ∈ {RWW,RRWW} and ω1 and ω2 map the transi-
tions of M1 and M2 to singleton sets over Δ, and let T1, T2 ⊆ Pfin(Δ

∗). Then
there are an alphabet Δ′, a wwordX-automaton M = (M,ω), where ω maps the
transitions of M to singleton sets over Δ′, and a set T ⊆ Pfin(Δ

′∗) such that
LT (M) = LT1(M1) ∩ LT2(M2).

Proof. For i = 1, 2, let Mi = (Mi, ωi), where Mi = (Qi,Σ,Γi, c, $, q
(i)
0 , ki, δi)

is an RRWW-automaton, ωi is a weight function that maps the transitions of
Mi to singleton sets over Δ, and let Ti ⊆ Pfin(Δ

∗). We construct an alphabet
Δ′, a wwordRRWW-automaton M = (M,ω), where ω maps the transitions of
M to singleton sets over Δ′, and a subset T ⊆ Pfin(Δ

′∗) such that LT (M) =
LT1(M1) ∩ LT2(M2), that is, for all w ∈ Σ∗, w ∈ LT (M) iff w ∈ LT1(M1)
and w ∈ LT2(M2).

On input a word w ∈ Σ∗, the automaton M will be able to simulate M1

as well as M2. Essentially, the simulation of an accepting computation of M1

on input w should give the same weight as the corresponding computation
of M1, and analogously, the simulation of an accepting computation of M2 on
input w should give the same weight as the corresponding computation ofM2.
However, as the elements of T1 and T2 are subsets of Δ

∗, it could happen that
fM1
ω1

(w) is an element of T2, although w �∈ LT1(M1). Thus, we must ensure that
the set of weights of the simulations of all accepting computations of M1 for
an input word w cannot be an element of T2, and analogously for simulations
of accepting computations of M2 and T1.

For this purpose, we define the following sets and mappings. Let Δ1 =
Δ ∪ {@}, Δ̂ = { â | a ∈ Δ }, Δ2 = Δ̂ ∪ {@̂}, and let Δ′ = Δ1 ∪Δ2. Further,
let σ1, σ2, and σ

′ be the mappings that are given through

σ1(w) = w@ for w ∈ Δ∗,
σ2(w) = â1â2 . . . ân@̂ for w = a1a2 . . . an ∈ Δ∗,
σ′(λ) = λ,
σ′(w) = â1â2 . . . ân for w = a1a2 . . . an ∈ Δ+,

which are extended to sets by simply applying them to all elements of a given
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set. Finally, let ω′
1 and ω

′
2 be the weight functions that are defined as follows:

ω′
1(t) = {u@} for each accept transition t ∈ δ1,where ω1(t) = {u},
ω′
1(t) = ω1(t) for all other transitions t ∈ δ1,

ω′
2(t) = {σ′(u)@̂} for each accept transition t ∈ δ2,where ω2(t) = {u},
ω′
2(t) = σ′(ω2(t)) for all other transition t ∈ δ2.

Now let M′
1 = (M1, ω

′
1) and M′

2 = (M2, ω
′
2), and let T ′

1 = {σ1(V ) | V ∈ T1 }
and T ′

2 = {σ2(V ) | V ∈ T2 }. Then LT1(M1) = LT ′
1
(M′

1) and LT2(M2) =

LT ′
2
(M′

2). It is easily seen that fM1

ω′
1
(w) ⊆ Δ+

1 and fM2

ω′
2
(w) ⊆ Δ+

2 for each

w ∈ Σ∗.
The RRWW-automatonM = (Q,Σ,Γ, c, $, q0, k, δ) and the weight function

ω are defined as follows. If max{k1, k2} = 1, we take k = 2; otherwise, we take
k = max{k1, k2}. Starting from the initial configuration on input w ∈ Σ∗, M
first guesses whether to simulate M1 or M2. In order to remember its guess,
δ contains some transitions that allow M to combine the first two symbols
a1 and a2 of w into a special auxiliary symbol of the form [a1, a2, i], where
i ∈ {1, 2} is the above guess. The weight function ω assigns the set {λ} to
these transitions. In the subsequent cycles, M simulates the machine Mi on
seeing the symbol [a1, a2, i]. Of course, the symbol [a1, a2, i] leads to some
adjustments in the construction of the transitions of M that simulate M1 and
M2. However, this technique has already been presented in detail in the proof
of Theorem 4.3.1. An accepting computation of M with the weight ω′

i(AC)
can be obtained by simulating an accepting computation AC of Mi on input
w. Finally, let T = {V1 ∪ V2 | V1 ∈ T ′

1 and V2 ∈ T ′
2 }. Then, for each w ∈ Σ∗,

w ∈ LT (M) iff w ∈ L(M1) ∪ L(M2) and it holds that fM
ω (w) ∈ T . The

latter means that there exist a subset V1 ∈ T ′
1 and a subset V2 ∈ T ′

2 such that
fM
ω (w) = V1 ∪ V2. This implies that fM1

ω′
1
(w) = V1 and fM2

ω′
2
(w) = V2, which

means in particular that both, M1 and M2, accept on input w. It follows that
LT (M) = LT ′

1
(M′

1)∩LT ′
2
(M′

2). For RWW-automata, the result can be proved
in exactly the same way.

This is the first result that shows that a class of languages defined in terms
of a quite general class of restarting automata is closed under the operation of
intersection. Using essentially the same technique also the following closure
property can be derived.

Theorem 6.4.4 ([WO16b]). Let M1 = (M1, ω1) and M2 = (M2, ω2) be
wwordX-automata, where X ∈ {RWW,RRWW} and ω1 and ω2 map the transi-
tions of M1 and M2 to singleton sets over Δ, and let T1, T2 ⊆ Pfin(Δ

∗). Then
there are an alphabet Δ′, a wwordX-automaton M = (M,ω), where ω maps the
transitions of M to singleton sets over Δ′, and a set T ⊆ Pfin(Δ

′∗) such that
LT (M) = LT1(M1) ∪ LT2(M2).
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In fact, we have also the following result.

Theorem 6.4.5 ([WO16b]). Let M1 = (M1, ω1) and M2 = (M2, ω2) be
wwordX-automata, where X ∈ {RWW,RRWW} and ω1 and ω2 map the transi-
tions of M1 and M2 to singleton sets over Δ, and let T1, T2 ⊆ Pfin(Δ

∗). Then
there are an alphabet Δ′, a wwordX-automaton M = (M,ω), where ω maps the
transitions of M to singleton sets over Δ′, and a set T ⊆ Pfin(Δ

′∗) such that
LT (M) = LT1(M1) · LT2(M2).

Proof. It is known that the language classes L(RWW) and L(RRWW) are
closed under the operation of concatenation [JLNO04]. The central idea of
the proof is to guess a factorization w = uv for an input w, to combine the last
symbol a of u and the first symbol b of v into a special symbol [a, b] in order
to fix this guess, and to simulate the first automaton on u and the second
on v. Using the alphabets and mappings from the proof of Theorem 6.4.3,
and by taking T = {V1 · V2 | V1 ∈ T ′

1 and V2 ∈ T ′
2 }, the simulation technique

from [JLNO04] can be used.

Finally, we close this section with the following result.

Theorem 6.4.6. Let M = (M,ω) be a wwordX-automata, where X ∈ {R,RR,
RW,RRW, RWW,RRWW} and ω maps the transitions of M to singleton sets
over Δ, and let T ⊆ P(Δ∗). Then there are an alphabet Δ′, a wwordX-
automaton M′ = (M ′, ω′), where ω′ maps the transitions of M ′ to singleton
sets over Δ′, and a set T ′ ⊆ Pfin(Δ

′∗) such that LT (M) = LT ′(M′).

Proof. We can prove the above result by using the technique from [Wan17].
Let M = (M,ω) be a wwordX-automaton, where M = (Q,Σ,Γ, c, $, q0, k, δ) is
a restarting automaton of type X and ω maps the transitions ofM to singleton
sets over Δ, and let T ⊆ P(Δ∗). For each input w ∈ Σ∗, if w /∈ LT (M), then
this means that either w /∈ L(M), or w ∈ L(M) but fM

ω (w) /∈ T . Let M ′ be
a restarting automaton of type X that performs each transition t exactly as
M if t ∈ δ. Further, for each q ∈ Q and each admissible window content u, if
δ(q, u) = ∅, thenM ′ contains the accept transition (q, u) → Accept. Therefore,
M ′ accepts all inputs, and for each input all computations are accepting. Let
Δ′ = Δ ∪ {@}, and let ω′ be the weight function that is defined as follows

ω′(t) =
{
ω(t), for each transition t ∈ δ,
@, otherwise.

As for each input word w ∈ Σ∗, the value of fM
ω (w) is a finite set over Δ, it

suffices to consider subsets of Pfin(Δ
∗). Then, we take

T ′ = {V1 ∪ V2 | V1 ∈ {L ·@ | L ∈ Pfin(Δ
∗)}, V2 ∈ Pfin(Δ

∗)� T }.
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For each input w ∈ Σ∗, if w ∈ LT (M), then it follows that w ∈ L(M),
and fM

ω (w) ∈ T . Further, by the above definition of the weight function
ω′, it is easily seen that fM ′

ω′ (w) does not belong to the subset T ′. Hence,
w /∈ LT ′(M′).

If w /∈ LT (M), then it follows that w /∈ L(M), or w ∈ L(M), but fM
ω (w) /∈

T . First, we consider the case that w /∈ L(M), that is, there is no accepting
computation of M on the input w. It is rather clear that w ∈ L(M ′), as M ′

accepts all inputs, and the weight of each computation of M ′ on the input
w ends with the symbol @. By the definition of the subset T ′ it follows that
fM ′
ω′ (w) ∈ T ′, and thus w ∈ LT ′(M′). Further, we consider the case that
w ∈ L(M), but fM

ω (w) /∈ T . It is easily seen that fM ′
ω′ (w) = V1 ∪ V2, where V1

is a finite set of words that end with the symbol @, and V2 = fM
ω (w). Note

that V1 can also be empty. By the definition of the subset T ′ we obtain that
the union V1 ∪ V2 ∈ T ′, and thus w ∈ LT ′(M′).

From the arguments above, it follows that LT (M) = LT ′(M′).

6.5 Concluding Remarks

We have introduced the notion of acceptance relative to a subset of a semiring
using the weight function of a weighted restarting automaton to specify a lan-
guage. This language is obtained from the language that is accepted by the
underlying (unweighted) restarting automaton by restricting the weight asso-
ciated to a given input word through an additional requirement. Here we have
considered the case of the semirings over integers, such as the tropical semi-
ring and the semiring of natural numbers with addition and multiplication,
and the case of semirings of formal languages such as the regular languages
REG(Δ) over a finite alphabet Δ. First, we have seen that by using the semi-
ring Z∞, we can simulate the computations of a restarting automaton with
auxiliary symbols by an automaton without auxiliary symbols, and by using
the semiring N, some #P-complete problem is solvable even by wR-automata.
Further, for the notion of acceptance relative to a regular language, we have
shown that our notion of relative acceptance just corresponds to that of non-
forgetting restarting automata. In addition, we have also studied the closure
properties and membership problems of these language classes. In particular,
using a stronger acceptance notion, the classes of languages that are com-
puted by general RWW- and RRWW-automata are closed under the operation
of intersection. Finally, we summarize the inclusion relations between the
language classes above in Figure 6.1.

However, many problems remain open. First, we do not yet have a charac-
terization for the classes of languages that are accepted by the various types
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L̂(X,REG(Δ),REG(Δ)) ��

��

L̂(X,CFL(Δ),CFL(Δ))

��

L(X,Pfin(Δ
∗),Hreg(Δ)

fin ) �� L(X,Pfin(Δ
∗),Hcfl(Δ)

fin )

L(X,N∞,HN
fin)

��

��

L(X,Z∞,Hz
fin)

��

Figure 6.1: Hierarchy of classes of languages that are accepted by weighted
restarting automata relative to subsets of various semirings. An arrow denotes
a (proper) inclusion.

of weighted restarting automata relative to subsets of the associated semiring.
Further, the properness of most of the inclusions above is still unknown. Most
importantly, we do yet not have an upper bound for the expressive power of
these weighted restarting automata that we considered above, and it is still
open whether the class L(X,Pfin(Δ

∗),Hcfl(Δ)
fin ) contains a language that is not

context-sensitive. Notice that the languages L3SAT,half belongs to the lan-
guage class DCSL, as a deterministic linearly space-bounded Turing machine
can certainly accept them by just checking all assignments, respectively.
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Chapter 7

Conclusion

In this work we have introduced weighted restarting automata and studied
their computational power. We have seen that the class of functions that are
computed by weighted restarting automata is quite rich, and each polyno-
mial can be realized by a wRWW-automaton. In addition, it is shown that
the function classes F(RWW,Σ, S) and F(RRWW,Σ, S) are closed under the
operations of addition, scalar multiplication, and Cauchy product. Further,
we have proved that the class of relations that are computed by weighted
restarting automata of any type is incomparable to the relation classes lbPDR
and PDR with respect to inclusion. Most importantly, we have obtained that
the relations class R(mon-wRWW) is strictly included in the relation class
R(mon-wRRWW), which is the first result that establishes a difference in the
computational power between a model of the mon-RWW-automaton and the
corresponding model of the mon-RRWW-automaton. Finally, the classes of
language accepted by weighted restarting automata over various semirings as
well as their closure properties and membership problems have been stud-
ied. We have seen that word-weighted restarting automata with the weak
acceptance condition turn out to be equivalent to non-forgetting restarting
automata. In particular, using a stronger acceptance condition, the classes
of languages accepted by wwordRWW- and wwordRRWW-automata are closed
under the operation of intersection. This is the first result that shows that
a class of languages defined in terms of a quite general class of restarting
automata is closed under the operation of intersection.

However, the following related questions remain open:

1. Are the classes F(X,Σ, S) closed under addition and/or Cauchy product
also for those types of restarting automata that cannot use auxiliary
symbols?

2. For all types of restarting automata, it remains to characterize the
classes of functions F(X,Σ, S) and F̂(X,Σ, S) in a syntactic manner.
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3. What is the inclusion relation between the classesRlb((det-)mon-wRR(1))
and lbPDR?

4. It remains to characterize the classes of languages that are accepted by
the various types of weighted restarting automata relative to subsets of
the associated semiring.

5. For many types of restarting automata, the properness of the inclusions
between the classes of languages that are accepted by weighted restarting
automata over various semirings still remains proper.

6. Does the class L(X,Pfin(Δ
∗),Hcfl(Δ)

fin ) contain a language that is not
context-sensitive?

In order to explore these open problems, further study is called for.
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[Mrá01] Frantisek Mráz. Lookahead hierarchies of restarting automata.
Journal of Automata, Languages and Combinatorics, 6(4):493–
506, 2001.

[MS04] H. Messerschmidt and H. Stamer. Restart-Automaten mit
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List of Abbreviations

3-SAT 3-statisfiability problem
artDPDF class of linearly bounded functions the are computed by

well-behaved deterministic pushdown transducers that
must pop from their pushdowns during λ-steps

artPDR class of almost-realtime pushdown relations
CFL class of context-free languages
CRL class of Church-Rosser languages
CSL class of context-sensitive languages
DCFL class of deterministic context-free languages
DCSL class of deterministic context-sensitive languages
det deterministic
DFA deterministic finite state automaton
DPDA deterministic pushdown automaton
DPDF class of functions that are computed by well-behaved

deterministic pushdown transducers
DPDR class of deterministic pushdown relations
DPDT deterministic pushdown transducer
DTPDA deterministic two-pushdown automaton
FST finite state transducer
GCSL class of growing context-sensitive languages
lb linearly bounded
lbDPDF class of linearly bounded functions the are computed by

well-behaved deterministic pushdown transducers
lbPDR class of linearly bounded pushdown relations
mon monotone
MVR move-right
nf non-forgetting
NFA nondeterministic finite state automaton
NP nondeterministic polynomial time
P deterministic polynomial time
PC parallel communicating
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PDA nondeterministic pushdown automaton
PDR class of pushdown relations
PDT nondeterministic pushdown transducer
RAT class of rational relations
RE class of recursively enumerable languages
REG class of regular languages
rtDPDF class of linearly bounded functions the are computed by well-

behaved deterministic pushdown transducers without λ-steps
rtPDR class of realtime pushdown relations
stl stateless
Td transducer
TPDA nondeterministic two-pushdown automaton
w weighted
wbDPDT well-behaved deterministic pushdown transducer
wword word-weighted
wFIN finitely weighted
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List of Symbols

N set of all natural numbers
N+ set of all positive natural numbers
N∞ N ∪ {∞}
N N ∪ {−∞}
Q set of all rational numbers
R set of all real numbers
R type of restarting automaton that can only remove some symbols

from its read/write window in a rewrite step, and that must restart
immediately after performing a rewrite step

RR type of restarting automaton that can only remove some symbols
from its read/write window in a rewrite step

RRW type of restarting automaton that cannot use auxiliary symbols in
a rewrite step

RRWW general type of restarting automaton
RW type of restarting automaton that cannot use auxiliary symbols in

a rewrite step, and that must restart immediately after
performing a rewrite step

RWW type of restarting automaton that must restart immediately
after performing a rewrite step

Z set of all integers
Z∞ Z ∪ {∞}
Z Z ∪ {−∞}
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