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Abstract

In modern fiber-optic communications a narrow spectral linewidth rep-
resents an important laser specification as it leads to the reduction
of signal dispersion and allows for high bit rate and long haul optical
communications. Being a statistical value, reliable measurement or cal-
culation of spectral linewidth is not a straightforward problem. The
thesis presented here deals with dynamic modeling of edge-emitting
semiconductor laser diodes, while investigating the physics governing
the spectral linewidth behavior.

To investigate this problem a laser simulation software, that will be
referred to as QD-wave, was developed as a part of the thesis work.
The software is designed mainly to address this problem for the case of
quantum dot edge-emitting semiconductor lasers. The lasers based on
quantum dot active material are known for many desirable properties,
e.g. temperature insensitive threshold, high modulation bandwidth
or low linewidth enhancement factor. This makes them a potential
solution for the future high bit rate fiber-optic communications.

The laser modeling relies on time domain multi-section traveling
wave method, while the noise sources are implemented in the scope of
Langevin dynamics. The laser model was developed with an aim to
include all the relevant Gaussian and colored noise sources, as well as
the physical effects that govern the spectral linewidth behavior. To get
a better insight into the importance of different effects and validity of
simulation models, the simulation results are compared with spectral
linewidth measurements of the designed quantum dot based photonic
integrated circuits.
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Zusammenfassung

In heutigen photonischen Netzen ist die Linienbreite ein wichtiger

Spezifikationsfaktor fiir Laserdioden, weil die schmale Linienbreite di-

rekt zu geringerer Dispersion fithrt und dadurch hohere Bitraten und

langstreckige Kommunikation ermoglicht. Da die Linienbreite ein statis-
tischer Wert ist, ist die zuverlissige Messung oder Ausrechnung nicht

immer leicht realisierbar. Die hier vorgelegte Dissertation befasst sich

mit der dynamischen Modellierung des kantenemittierenden Halbleit-

erlasers unter Berticksichtigung der Effekte, die die Linienbreite beein-

flussen.

Um das beschriebene Problem zu untersuchen, wurde ein Simulator
flir Laserdioden entwickelt, den wir weiter im Text als QD-wave beze-
ichnen werden. Die Software ist hauptsachlich geplant um dieses Prob-
lem fiir den Fall von kantenemittierenden Quantenpunktlaser anzuge-
hen. Quantenpunktlaser sind bekannt fiir mehrere wiinschenswerten
Spezifikationsfaktoren, wie z.B. temperaturstabile Schwelle, gute Mod-
ulationsbandbreite oder niedriger Henry-Faktor, der die Ausdehnung
der Linienbreite bestimmt. Aus diesem Grund sind Quantenpunktlaser
potenziell eine optimale Losung fiir zukiinftige photonische Netze mit
hohen Bitraten.

Die Modellierung des Lasers beruht auf der Methode der laufenden
Welle, die im Zeitbereich implementiert ist, wobei die Rauschquel-
len im Rahmen der Langevin-Dynamik beschrieben sind. Das Laser-
Modell wurde mit dem Ziel entwickelt alle relevante Rauschquellen
zu beriicksichtigen, wie auch die physischen Effekte die die Linien-
breite beeinflussen. Um einen besseren Einblick in die Bedeutung

iv



verschiedener Effekte und in die Giiltigkeit des entwickelten Simula-
tionsmodells zu gewinnen, wurden die Simulationsergebnisse auch mit
Messungen der Linienbreite von realisierten quantenpunktbasierenden
photonischen Komponenten verglichen.
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Chapter 1

Introduction

1.1 From Maser to Semiconductor Laser

Four decades after the theoretical study of stimulated emission by Al-
bert Einstein [1], the principle of stimulated emission was first em-
ployed in a device emitting stimulated electromagnetic radiation at
microwave frequencies [2]. The maser ' device, developed at Columbia
University in 1953 by Charles Townes, James Gordon and Herbert
Zeiger, was based on stimulated emission by the excited ammonia
molecules. The work was later extended by Charles Townes and Arthur
Schawlow, this led to first design principles of what was then called an
optical maser or in principle a laser 2 device that operated at optical
frequencies.

At the same time Nikolay Basov and Aleksandr Prokhorov at Lebe-
dev Institute of Physics, described the principles governing the oper-
ation of the maser. Later in 1964 they have shared the Nobel Prize
in Physics together with Charles Townes for their research on stimu-
lated emission. However, the technology still needed time to develop.
The first semiconductor based laser have suffered from high threshold
currents which greatly limited the room temperature operation. The
major breakthrough came with the proposition of the heterostructure
principle by Herbert Kromer in 1963 [3], which reduced the thresh-
old current by the improved carrier confinement. Not long after, due

IMASER - Microwave Amplification by Stimulated Emission of Radiation
2LASER - Light Amplification by Stimulated Emission of Radiation

1



2 CHAPTER 1. INTRODUCTION

to the temporal and spatial coherence of the emitted light, the lasers
have found many practical applications, ranging from laser surgery in
medicine, measurement of distance and speed, coherent optical com-
munications to material processing in industry.

The importance of lasers in fiber-optic communications is more
than apparent today, and as they are the main concern of this thesis,
few points related to their application in fiber-optics should be stressed
here. Due to the problems of signal dispersion in optical fibers, for
long-haul communications the temporal coherence and high intensity
of laser light represent an important specification. Namely, the high
spectral purity of the transmitter would minimize the need for signal
reconstruction along the communication line, which would then min-
imize the costs by reducing the number of signal repeaters. There
are however numerous techniques that indirectly address the disper-
sion problem, but with the trend of increasing bit rate in fiber-optic
communications, the need for higher temporal coherence, i.e. narrow
spectral linewidth of signal sources cannot be avoided.

1.2 Laser Linewidth in Fiber-Optic
Communications

Since the development of crucial technologies for high bit rate fiber-
optic communications, the internet has seen a great transformation,
with fiber-optics breaking all the bit rate barriers of the standard cop-
per cable based networks. However, with growing number of develop-
ing digital services the demand for ever higher internet bit rates does
not seem to saturate with modern state of fiber-optics. To accommo-
date this trend the fiber-optic communications will have to continue
to evolve.

One of the commonly used modulation techniques in fiber-optic
communications is the on-off keying or OOK for short, the simplest
amplitude modulation. Even though attractive for its simplicity and
low-cost transceiver realization, it still greatly limits the bit rate to
10 Gb/s per carrier wavelength. To fully utilize the fiber-optic in-
frastructure with minimum costs of restructuring, higher-order signal
modulations, Fig. (1.1), need to be integrated with existing dense
wavelength-division multiplexing (DWDM) systems.
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a) b) c)

Figure 1.1: Constellation diagrams of typical digital modulation schemes: a) on-off
keying(OOK), b) quadrature phase-shift keying(QPSK), ¢) 8-phase-shift keying(8-
PSK)

However, the high-order modulation schemes that are typically em-
ployed in wireless and copper cable based networks impose extremely
high spectral purity for the signal sources in case of the fiber-optic com-
munications [4]. For this reason there is still ongoing research on re-
duction of spectral linewidth in semiconductor lasers. Some promising
results of quantum well based laser designs can be found already [5,6],
but due to complexity of operating conditions of the semiconductor
laser, it is still an open question what would be the optimal design
with respect to yield, quality or the complexity of the production pro-
cesses involved.

1.3 Problem of Spectral Linewidth

The laser diodes are well known for their high spectral purity, i.e.
high temporal coherence of emitted light. However, the linewidth of a
laser diode depends strongly on the noise sources affecting the device
properties, by modifying the phase and intensity of the lasing light.
The two basic noise sources are spontaneous emission noise and car-
rier noise. The first equation applied for the linewidth estimation of
lasers sources was an adapted version of the spectral linewidth equa-
tion used in experiments with masers, known as Schawlow-Townes line-
width equation. Where the equation for spontaneous emission below
lasing threshold reads
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/

'R,
Agpon = —2, 1.1
P = 9nN, (1.1)
and above threshold for stimulated emission (modified Schawlow-Townes
formula):

’

'R,

Al/stzm 47TNP 9 (12)
here the additional 1/2 factor for the equation above threshold comes
from the nonlinear coupling of the carrier and field rate equations, sup-
pressing one of the two quadrature components of the noise [7]. Where
I' is the confinement factor of the active region, R;p, the spontaneous
emission coupled to the lasing mode and NN, the photon density. Even
though accurate enough for the spectral linewidth below threshold,
Schawlow-Townes linewidth equation considers only the effect of spon-
taneous emission on the spectral linewidth of semiconductor lasers and
often underestimates the linewidth above threshold.

Major improvement of the spectral linewidth theory of semicon-
ductor lasers above threshold came with the seminal work of Charles
Henry in 1982, where he introduced the linewidth enhancement fac-
tor [8], often denoted as a-factor. The a-factor relates the change in
real part of the refractive index, An’, to change in imaginary part of
the refractive index An".

!

An
=7 (1.3)
The real and imaginary part of the refractive index are linked by
Kramers-Kronig relation, meaning that the change in imaginary part
will also cause the change in the real part of the refractive index and
vice versa. The change in carrier density changes the imaginary part,
n”, which changes via Kramers-Kronig relation the real part of the re-
fractive index. As this is happening on short time intervals the phase of
the field is also altered which results in additional linewidth broaden-
ing that cannot be neglected. The spectral linewidth of semiconductor
lasers above threshold was found by Charles Henry to depend quadrat-
ically on the linewidth enhancement factor:
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'R

(1 +a?). (1.4)

p

AUszfim =

The Eq. (1.4) gives fairly accurate estimation for most of the applica-
tions. However, at higher injection currents and higher output powers
where spectral linewidth reaches its minimum that is highly needed
in fiber-optic communications the situation further complicates with
numerous other phenomena emerging. The effect of carrier noise on
spectral linewidth becomes more relevant at high output powers, its
white noise component but also colored noise component that is still
not fully understood. Linewidth enhancement factor cannot be con-
sidered constant but is rather both intensity and carrier density de-
pendent, or formation of the carrier grating pattern with high field
intensity are some of the problems arising in these extreme cases.

1.4 TCAD in Semiconductor Industry

Looking historically, before the broader adoption of the computers and
computer aided design (CAD) tools, the companies in the semiconduc-
tor industry were commonly running the whole production line within
the company. The reason for this lies mainly in the design procedure of
the semiconductor devices. Prior to 1980, the estimation of the device
performance was mainly limited to analytical models, meaning that
the availability of experimental data of the early prototypes was cru-
cial for optimization of the design for the current needs of the market.
Such an approach generally requires substantial initial investments on
the side of the companies, due to the costly equipment which was often
underutilized as it was used only for own needs.

With the increase of computational power and the development
of comprehensive multi-physics technology aided design (TCAD) soft-
ware, the approach to device design has changed drastically. More
accurate two- and three-dimensional models are today able to replace
much of the tedious experimental work while driving down the produc-
tion costs, by reducing the number of iteration steps necessary to reach
the performance requirements. Aside from the accurate modeling of
the semiconductor devices the TCAD models, like the one presented in
this thesis, offer deeper insight into the interplay of numerous effects
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which can be particularly advantageous in understanding the opera-
tion of novel designs. Finally, the benefits of implementing the TCAD
tools in production process did not only benefit the already established
companies but also promoted a healthy competition in the semicon-
ductor industry, by enabling the emergence of many fabless companies
that had novel ideas but limited resources to finance the fabrication
process.

1.5 Overview of the Thesis

Chapter 1: Introduction. Historical background of semiconduc-
tor lasers is summarized here, and the importance of narrow spectral
linewidth in fiber-optic communications is explained. Finally, the mo-
tivation for using the numerical modeling is discussed, together with
its general effect on semiconductor industry.

Chapter 2: Elementary Laser Theory. The theory of lasers is dis-
cussed by following its historical evolution. First, the two seminal pa-
pers are reviewed in order to summarize the classical and semi-classical
theory framework, with the classical theory relating to free-electron
lasers and semi-classical to a more broader class of lasers driven by
the polarization of the active medium. The material gain as one of the
crucial characterization parameters of semiconductor lasers is then dis-
cussed in relation to quantization of the laser’s active material, while
showing how the quantum effects can contribute to the overall perfor-
mance of the laser.

Chapter 3: Modeling of Quantum Dot Active Material. The
quantum dot gain model is fully described, with examples of extracted
parameters as they are implemented in the dynamic laser simulator
QD-wave, e.g. modal gain, refractive index change, linewidth enhance-
ment factor etc. The adequate input parameters are also given, with
regard to reported quantum dot gain measurements.

Chapter 4: Dynamic Modeling of Semiconductor Lasers. The
core of the developed time-domain laser simulator @ D-wave, based on
the traveling wave method, is presented together with all the included
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effects related to the noise and laser linewidth. The model is essen-
tially 1+1 dimensional, i.e. considers only longitudinal and temporal
variation of the model variables. The transversal problem is treated
separately, where the inclusion of transversal confinement factors and
the coupling coefficient of the Bragg grating is described. Finally, fol-
lowing the limitations of the traveling wave method in terms of the
spectral resolution, the necessary postprocessing module for linewidth
extraction is described with discussion of possible applications.

Chapter 5: Simulation Examples and Benchmarks. In this
chapter we deal with the practical applications of the QD-wave simu-
lator, for the purpose of validating the laser model and investigating
the potential of considered designs. We start with a basic distributed
feedback (DFB) quantum dot laser, where we study the importance
of different effects related to the linewidth while seeking to optimize
the design for narrow spectral linewidth. The performance of the DFB
lasers is then examined in an integrated device, a tunable laser array
based on the Y-couplers. Finally, a further reduction of the spectral
linewidth is investigated by optimization of the cavity design.

Chapter 6: Conclusions and Outlook. Following the summary
of major results, we give final conclusions and consider possible future
model improvements that could lead to an increased accuracy and
better understanding of the experimental results.
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Chapter 2

Elementary Laser
Theory

Since the introduction of the first maser and laser devices [2,9], the laser
theory has evolved in parallel with the progress of the technology and
design aspects. Due to the wave-particle duality the interpretation of
laser operation can be somewhat confusing. Historically both quantum
and classical theory have been employed in the study of stimulated
emission. In this chapter we briefly summarize the elementary laser
theory by reviewing two seminal papers [10,11], showing first how the
classical theory is sufficient for the explanation of amplification within
a free-electron laser. The classical theory we then extend to the more
modern semi-classical laser model, that is widely accepted today in the
study of semiconductor lasers, thus including the quantum aspects of
the active medium.

2.1 Classical Free-electron Laser Theory

In the 1960s, during the earlier history of laser theory the wave-particle
duality of photons was already well established [1]. The early Einstein’s
work on stimulated emission in the framework of quantum mechanics
may have acted as a stimulus for the similar treatment of the laser op-
eration. The early publications studying the principles of free-electron
laser operation [12,13], rely heavily on the quantum mechanical ap-

9



10 CHAPTER 2. ELEMENTARY LASER THEORY

proach. This is not particularly surprising as we are dealing with elec-
trons and photons, which are indeed quantum mechanical particles.
Nevertheless, the principle of amplification in a free-electron laser is
not intrinsically quantum mechanical. To show this we can follow the
work in [10], and see how the nonlinear interaction of the electromag-
netic field and the active medium can lead to gain in a laser.

To this end, we will use purely classical theory, i.e. Maxwell’s
equations for the field and Newton’s equations of motion for the active
medium, defined in the space-time continuum. More precisely the
dynamics of the electron distribution, f(x, P,t), is described by the
collisionless relativistic Boltzmann equation:

df _of . 9of  pOf
a ot Yian T PR

while the field is coupled with electron distribution via the wave equa-
tion through the transverse current J;:

—0, (2.1)

10%A
VZA - EW = —,U,()Jt, (22)

where P is the canonical momentum, x the position vector, and A the
vector potential. The time dependent number of electrons N(t), and
transverse current Jy(x,t), are defined as:

N(t) = /df‘x/df‘P.f(m,P,t), (2.3)

Ji(x,t) = q/ng-vtf(a:.,P, t). (2.4)

To make the problem defined by the Egs. (2.1,2.2) more analyti-
cally useful, one can greatly simplify it by adopting some reasonable
approximations. The electromagnetic field can be assumed as trans-
verse A(z,t), varying only longitudinally along z-axis, and with time t.
Similarly, considering that the electrons are injected along the z-axis
at a relativistic speed, the transverse velocity being much smaller can
be also neglected, and thus p; = 0. The approximations ultimately
allow us to reduce the problem to a one-dimensional. First, we can
consider how the relativistic electron Hamiltonian:
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H = ymc® = e/ (P, — qAy)? + p.2 + m2c2, (2.5)

can be simplified. By neglecting the transverse momentum, the Hamil-
tonian reduces to:

H = ymc? = mc?\/1+ (¢A,/mc)? + (p./me)?, (2.6)

where p, is a kinetic momentum along z-axis, p, = ymuv,. For the
electric fields smaller than 10'* V/m [10], the Hamiltonian further
simplifies to:

H = ymc® = mc*\/1+ (p./mc)2. (2.7)

Assuming a perfect cylindrical geometry of radius a, for the injected
electron beam, the electron distribution can be written as:

flx, P,t) = [u(r) — u(r — a)]dop(P)h(z, p., t), (2.8)

where u(x) is a Heaviside function. The Eqs. (2.1,2.2) can finally
be reduced to one-dimensional by substituting the results from Egs.
(2.8,2.7):

Oh  p. Oh _ ¢ I(3A7) oh

- = 2.
ot mydz my 0z Op. (29)
02 10 >F > Mz, p.,t)
Z " VA = A R E s 2.1
<822 02 6152) t meceo t [m dpz v ) ( O)

where F = a?/b%, and b is the radius of the cavity. The component
h(z,p.,t) in Eq. (2.8), can be expanded in a perturbation series [10,11]:

h=hO 4+ p® 4 p® 4 (2.11)
and by keeping only the first two terms, 2(?) and AV, we get a small-

signal model. By assuming the circularly polarized field A;:

€, — €

V2

A = {A; exp[—i(wit + k;iz)] + Agexp[—i(wst + ks2)]} + c.c.,

(2.12)
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consisting of incident and back-scattered field components of ampli-
tudes, A; and Ay, respectively. The first two terms, A% and bV (2, p., t),
in Eq. (2.11), of the small-signal model can be then expressed as:

RO = n F(p.), (2.13)

where n, is the electron density and F(p.), the initial electron momen-
tum distribution, and

—*K JATA i
hO(z, p,, ) = —L el 2l
Pz H

exp [—iAw(t — i) +c.c.,

Uy

(2.14)
where K = k; + k; and Aw = w, — w;. It can be noticed that the
R (z, p.,t) component describes the carrier density fluctuations along
the electron beam which are responsible for the scattering. Finally, by
substituting the A(®) and (2, p.,t), in the Maxwell’s equation and
integrating along the cavity of length L, one can obtain the small-signal
gain:

_ —47rg’ FnemK L d 1 (sin(3ul) ’
OL(S 1) - 2 Iz/dpz : F(pz)d <+)
= | 7P\ FpL

kiks

(2.15)
The classical theory as presented here is in most cases sufficient
to describe the operation of a free-electron laser. In contrast to semi-
conductor lasers, the free-electron lasers are driven by the incoherent
synchrotron radiation produced by the transverse acceleration of the
electrons in the relativistic electron beam. Only when the radiation is
strong enough the transverse electric field of the radiation can modu-
late the electron beam, creating the electron microbunches along the
laser axis where electrons are able to radiate photons that are in phase.
The design of a free-electron laser is often larger in scale, but due to
its wide range of operating frequency it is still present in many fields.
The tuning range covers the spectra ranging from microwave to X-
ray radiation, while applications can be found in medical and military

industries.
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2.2 Semi-classical Laser Theory

To get a more general theoretical framework describing a broader set of
laser devices one still needs to complement the classical electromagnet-
ics with quantum mechanical theory. The first version of such a self-
consistent semi-classical theory came with the work W. E. Lamb [11],
which relies on classical electromagnetic theory to describe the res-
onating field and the quantum theory to model the polarization of the
active medium. The electromagnetic field acts on the active medium
by polarizing it while the polarization acts as a source of the field
within the context of Maxwell’s equations.

0B
V x B = (Jf+a—D) (2.17)
: ot
V-D =y (2.18)
V-B=0 (2.19)

The optical field is defined by the four Maxwell’s equations, Eqs.
(2.16 - 2.19), i.e. Faraday’s law Eq. (2.16), Ampere’s law Eq. (2.17),
and Gauss’ laws for electric and magnetic field, Eq. (2.18) and Eq.
(2.19), respectively.

D=¢qE+P, B=H, J;=0E (2.20)

Using the relations for the vector fields Eq. (2.20), one can derive the
general wave equation, which governs the resonating field:

oF O’E o’P
Vx(VxE — — ===

( ) + poo ot =+ Hoco pon o~ pay
The early theory in [11], assumes that an array of excited atoms can be
well approximated by describing the electric state of an active medium
by a macroscopic polarization P(r,t). As a consequence as shown
in [11], by knowing the polarization of the active medium one can

(2.21)
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derive the amplitudes, frequencies and phases of the emitted radia-
tion. The theory treats the active medium as a simple system with
two excited levels, which partially enables the analytical extraction of
the aforementioned radiation properties. Nevertheless, by using more
modern numerical models the semi-classical theory can be also adapted
to semiconductor lasers and a wider range of active media [14], includ-
ing the quantization effects, by proper modeling of the polarization
term, P(r,t):

+00
P(r,t) = 60/ dr - xe(r,t, 7)E(r,t — 7). (2.22)
—00
The material polarization is defined in general as a convolution of the
electric field and a time dependent susceptibility x.(r,t), Eq. (2.22).

As the material does not react instantaneously to an applied electric
field E(r,t).

P(r,w) = exe(r,w)E(r,w) (2.23)

In practice it is often more informative to express the polarization in
the frequency domain, Eq. (2.23), due to the convolution the expres-
sion in time domain, Eq. (2.22), translates to a simple product. In
frequency domain one can often easily recognize the quantization level
of the laser’s active material, e.g. quantum well, quantum dot, as well
as valuable dispersion properties for the frequency of interest.

g(T7Naw): -

[[xe(r, N,w)] (2.24)
Clef f

ne(r, N,w) = R [xe(7, N,w)] (2.25)

2Mepy

For more design oriented readers it can be also interesting to re-
late the electric susceptibility to more practical physical properties,
such as carrier induced material gain, g(r, N,w), and refractive index
change, n.(r, N,w). These can be easily expressed as scaled real and
imaginary parts of the susceptibility, Eqs. (2.24,2.25). Thus it is also
possible to elegantly express the linewidth enhancement factor [8], as
the simple ratio of differential real and imaginary parts of the electric
susceptibility:
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~ R[Oxe(r, N,w)/ON]
T Tox.(r, N,w)/ON]

(2.26)

The three factors resulting from the electric susceptibility: material
gain, refractive index change and linewidth enhancement factor, de-
termine almost all of the characteristics of the semiconductor lasers.
The material gain plays a major role in threshold and efficiency of the
laser. The refractive index change governs the detuning of the lasing
spectra, while the linewidth enhancement factor plays a major role in
the spectral linewidth of the output spectra. For all the aforemen-
tioned reasons a special attention should be paid to modeling of the
material polarization.

It is worth noting that the original semi-classical theory as pre-
sented by W. E. Lamb [11], does not incorporate the noise modeling
that is present in both carrier and photon populations of the semicon-
ductor lasers. This on the other hand can be considered as a further
extension of the semi-classical laser theory. In that case the electric
displacement field would have to be expressed in a more general form:

D(r,t) =e¢E(r.t) + P(r,t)+ K(r,t), (2.27)

where K (r,t), is the contribution to polarization by the spontaneous
emission events.

Due to the nature of the problems considered in this thesis, the
realistic modeling of noise sources represents one of the key aspects of
the work. The contributing noise sources are included in the framework
of statistical physics, i.e. using the Langevin dynamics approach. More
details on how this is implemented in the laser simulator developed for
the purpose of this thesis, can be found in Ch. 4.

2.3 Material Gain
and Quantization Effects

From the classical theory of semiconductor lasers a simple expression
for the material gain per unit length can be written as [7]:
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1 dN, Ry
g =M _

= = 2.28
N, dz VN’ ( )

where V), is the photon density, and by expanding the stimulated emis-
sion rate, Ry, using the Fermi’s golden rule, one can obtain the gain at
a transition energy hw = FEy; = Ey — Ey, defined by the difference be-
tween the two discrete energies, Fy and Fy, located in the conduction
and valence band, respectively:

! 2
_ 2 [ Ha |
o vgN,

which relates the material gain to a reduced density of states p,, at a
transition energy Esq, and to a matrix element |H21/|7 which defines the
strength of carrier transition. The variables f5 and fi, representing the
occupation probabilities of the higher and lower energy states, further
express the dependence of material gain on the level of carrier inversion
induced by the pumping mechanism of the laser.

go1(hw)

pr(Ea1) - (fa— f1), (2.29)

Dimension  p(k) p(E)

3 B By (2] 3/2
w2 272 L p2

9 k- my
md wh2d,

) 2 p(k) (2] 1/2

Wdzdy vV Eap h?
0 - 25(E21 - E(])

Table 2.1: Density of states for Bulk(3D), Quantum well(2D), Quantum wire(1D),
Quantum dot(0D) in k-space, and versus energy for parabolic band approximation.

The reduced density of states in Eq. (2.35), describes the density
of transition pairs per unit transition energy and assuming that only
carrier states with the same k-vectors form the transition pair, the
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reduced density of states can be simply related to density of states in
the conduction and valence bands, p. and p,, as:

1 1 1

—=—+—, (2.30)

Pr Pc Puv
where p. and p, are in general finite values. For the simplified case
where the conduction and valence bands are approximated as parabolic,
it is possible to derive a closed-form expression for the density of
states [7]. However, in the case of more accurate band structure mod-
els, e.g. the k-p theory variations considering the effects of coupling
between the heavy hole (HH) and light hole (LH) subbands in the
valence band or the formation of material strain in the active region
can often lead to nonparabolic band structures [15]. In this case it is
more practical to express the reduced density of states at the transition
energy, pr(Es), through density of states in k-space, p(k):

1 1 dEy(k) 1 [dEy(k) dEy(k) (2.31)
o) plk) dk o) | dk dk | |

Thus by knowing the gradients of the conduction and valence band
structures, dFEy(k)/dk and dEy(k)/dk, it is possible to determine the
reduced density of states, p,(Es;), for any corresponding k-vector. The
density of states in k-space for different levels of material quantization
is given in Table (2.1), and for the approximate case of parabolic con-
duction and valence bands, their counterparts expressed in terms of
energy, p(F). For the case of parabolic bands, the reduced mass, m,.,
characterizes the parabolic shape of the transition energy FEsq, and can
be expressed in terms of the effective mass of electron and hole, m,
and m,, respectively:

1 1 1
—=—+— (2.32)
My Me My
In order to write down a more practical form of the material gain,

. . !
we can use the relation between the matrix element |Hs; |, and the
transition matrix element |Mr|,

! 2
2
|Ha|  ¢°h
N, 2nngepmp’w

|Mr|?, (2.33)
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and the definition of the transition matrix element,

| Mr|* = [(ucl@ - plu) - [{altn)], (2.34)

where u.(r) and wu.(r), are the conduction and valence band Bloch
functions, and () and (), the solutions of Schrodinger equation
in conduction and valence band, respectively, for a macroscopic poten-
tial in case of the quantized structures, e.g. quantum wells, quantum
dots. This ultimately allows us to write a more general expression for
the material gain per unit length:

mhq?

|(ucle - plun) - [(Walon)[* - pr(Eon) - (f2 = fo),

(2.35)
which features most of the relevant properties of the active material.
A careful reader might notice at this point that the Eq. (2.35), still
considers only a simple two-level band structure. To get a full dis-
persion of the material gain in case of quantized structures, we would
need to take into account the carrier transitions over all the possible
combinations of eigenenergies.

g1 (hw) = 7n600m02m

v2

E
V1

E1

X

Figure 2.1: Illustration of Schrodinger equation solutions to a quantum well prob-
lem in the conduction band.

Aside from the additional transitions energies arising from the quan-
tization of the active material, the uncertainty of the energy levels
involved additionally broadens the gain spectrum. The broadening of
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the energy states is a result of finite carrier lifetimes at the allowed
energy levels. As the broadening of this kind is the same for all the
atoms involved in generating the gain dispersion curve, the resulting
characteristic of this homogeneous broadening is Lorentzian.

By including the additional transition combinations over the eigenen-
ergies of conduction and valence band Fig. (2.1), and the intrinsic
Lorentzian broadening of the energy levels, we can give an example of
a more practical expression for the material gain in quantum wells:

hq? 0
g(hw) = %Z/ dE'|(uc|& - pluy)* - [(Wnltbn)[* - p°P (E)
L . ! _ /
ey VT REL R

(2.36)

where F, and F;,, are quasi-Fermi levels of the conduction and valence
band. The parameter v, characterizes the homogeneous broadening
and relates directly to the width of the Lorentzian spectral line as
FWHM = 2. When it comes to quantum dot and quantum wire ar-
rays we could write out the equations for material gain using a similar
procedure as for the quantum well, Eq. (2.36). The major difference
would be the presence of the inhomogeneous broadening of the transi-
tion energy. The nature of inhomogeneous broadening is not an intrin-
sic property of the material as for the homogeneous broadening but
stems from the particular technologies used for the epitaxial growth
of these nanostructures. Namely, as the technology used entails a fi-
nite variation in size of the nanostructures in an observed array, the
solutions of the Schrodinger equation are consequently affected. The
variation in size of quantum dots or quantum wires is often accompa-
nied by varying strain distribution for each element in the array, which
adds a further variation to eigenstates. The processes governing the
inhomogeneous broadening leads to an additional Gaussian broadening
of the gain dispersion which needs to be considered in a comprehensive
material gain model.
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Chapter 3

Modeling of Quantum
Dot Active Material

The quantum dot gain model implemented in the QD-wave software is
largely based on the models described in [16,17], which were already
shown to be in relatively good agreement with measurements. The
model assumes approximate quantum disk geometry for quantum dots
which makes it possible to solve the eigenstate problem of the quantum
dot semi-analytically. Within the active layers, carriers are assumed to
obey the Fermi-Dirac statistics, with static carrier density described
by a simple ABC recombination model. In this chapter the model is
fully described with discussion of appropriate input parameters for the
simulation of realistic quantum dot systems.

3.1 Quantum Dots as Active Material

Since the successful experimental demonstrations of quantum mechan-
ical effects many potential practical applications were hypothesized for
devices exploiting such phenomena. Reduction of geometric features of
semiconductor materials to de Broglie wavelength can excite new ma-
terial properties that are not related to material composition and as
such can indeed be considered as a new class of materials. Some of the
recent research efforts in the area of semiconductor devices based on
quantum effects include efficient nanowire light emitting diodes (LEDs)
and solar cells [18,19], high performance quantum well and quantum

21
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dot lasers in fiber-optics [6] or nanowire batteries, where high surface
to volume ratio and increased confinement of carrier wavefunctions are
exploited.

A — Buk

—.—- Quantum well
........ Quantum wire
—- Quantum dot

Density [c:m'3 eV'l]

Energy [eV]

Figure 3.1: Density of states for: bulk semiconductor, quantum well and quantum
wire

The main difference that quantized semiconductor materials bring
is the modified density of states that stems from the unique atom-like
distribution of available energy levels in conduction and valence band.
The density of states function, formed through quantization can gen-
erate higher density of states than for the same bulk semiconductor
material, and most of the desired properties of active semiconductor
materials in injection lasers stem either directly or indirectly from such
a modified density of states. Quantization of the material geometry,
first transforms the density of states function to a step-like function
in quantum wells and with further quantization to a delta-like func-
tion for quantum wires and quantum dots, Fig. (3.1). In quantum
dot based injection lasers this leads to an increased material gain,
increased differential gain and reduced frequency chirp under direct
current modulation [20].

Today, the quantum dots are grown mainly by Stranski-Krastanov
epitaxial growth where the three-dimensional islands are formed spon-
taneously after the critical layer of lattice-mismatched material is de-
posited on the substrate. Within these islands the electrons should
be ideally confined in all three dimensions, allowing carriers to occupy
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only the energy levels permitted by Schrodinger equation. In theory,
this should lead to Dirac-like density of states function and ideally
symmetric material gain function. However, the variation in size of
the quantum dots formed by Stranski-Krastanov growth directly af-
fects the eigenvalue solutions for each dot, leading to inhomogeneous
broadening of the spectral lines of the quantum dot array. By includ-
ing also the energy uncertainty of electrons that leads to homogeneous
broadening of the spectral lines within the dots, the density of states
function of the real quantum dot systems inevitably strays from the
often cited ideal Dirac-like density of states function.

Despite the aforementioned statistical nature of the quantum dot
systems, when used as active material in injection lasers, the quantum
dots still set the record values when it comes to maximum material
gain, low threshold current or reduced frequency chirp. Material gain
as high as 150000 cm ™, threshold current densities below 100 A /cm®
and linewidth enhancement factor below 2, under lasing conditions
have been recently reported [20,21]. For these reasons it is believed
that the quantum dot based injection lasers have a high potential in
future fiber-optic communications as uncooled, low linewidth and high
bit rate signal emitters.

3.2 Approximation of Quantum Dot
Geometry

The eigenstate problem of quantum dots is greatly simplified by ap-
proximating the dots as quantum disks of radius @ and height h. The
Schrodinger equation is solved in 3D real space, in a cylindrical coor-
dinate system. The wavefunction solutions in z direction correspond
to a finite quantum well problem, whereas the solutions in the p — ¢
plane correspond to a problem of particle in a circular box. To fully
define the extent of carrier confinement under material strain, some
basic band structure calculation is also necessary. This is addressed
by biaxial strain approximation, that assumes the spatially uniform
shift of the quantum dot bands. For a more accurate description of
geometry and strain, one could alternatively consider the quantum dot
models as in [22,23].
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3.2.1 Strained Band Edges

The material strain occurring at the interfaces between semiconduc-
tor materials with mismatched lattice constants, which allows for self-
organized growth of quantum dots under Stranski-Krastanov epitaxy,
also entails certain side effects. By successively growing two mis-
matched materials, the atoms forming the semiconductor lattice will
inevitably stretch and deform the intrinsic lattice structure of both
materials. By altering the lattice structure, as a result the conduction
and valence band of the quantum dots are shifted as well, which to-
gether with size of the quantum dots ultimately defines the band gap,
and consequently determines the resonant wavelength of the quantum
dot ground state.

/ (I
} Vo
compressive tensile shear

Figure 3.2: Three components of biaxial material stress considered in the quantum
dot gain model.

To calculate the modified energies of the band edges a simple strain
model is employed, considering only biaxial strain. This simplified ap-
proach to material strain allows for straightforward estimation of the
band edges which can be then easily tuned to match experimental re-
sults or desired lasing frequency of the ground state transition. Biaxial
strain calculation is carried out as in [15], with the neglected split-off
bands. To match this simple representation to the experiment, adjust-
ments to the band edges in the order of 100 meV are necessary. Having
calculated the band edges of the InAs quantum-dots, we have the ref-
erence energy values for the quantum disk problem that is solved for
both conduction and valence band. However, what is also necessary as
the input for the quantum disk calculation are the band offsets at het-
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erojuctions surrounding the quantum dot, that determine the potential
depth of the respective quantum confinement problems. For this pur-
pose, the results published in [24] were used as a reference point, where
the band offsets based on the measurements of the self-aligned InAs
quantum dot structure are reported.

3.2.2 Quantum Disk Problem

By assuming the separation of variables, an approximate wavefunction
can be derived, that is a product of the solutions in p — ¢ plane and
solutions in z direction:

where the solutions in p — ¢ plane, are of the form
L JCiolpp), p<a
0 V2m [ CaKo(gp), p > a, 2

the values of p and ¢ in Eq. (3.2) are determined from the Cauchy
boundary condition with assumed continuity of the wavefunction and
its derivative, and the relation

md* 2md* Vb — Vd a2
(pa)® + m—b*(qa)Q = %

In the equation (3.2), Cy and Cy are the constants to be determined
from normalization of the wavefunction (3.1), while J and K are Bessel
function of the first kind and modified Bessel function of the second
kind, respectively. In the equation (3.3), the difference in effective
masses of the disk and the barrier material is accounted for as well,
by introducing the factor my*/my*. Vj, and V; are the potentials of the
quantum disk and the barrier.

For the case of z direction problem, the wavefunctions take the fa-
miliar form as in the classical problem of finite quantum well. There-
fore, the wavefunctions can be grouped into even and odd solutions:

C efa(lz‘ih/2)7 z|l > h 2
weven(z> - 3 | | - / (34)
Cycos(k,z), |z| < h/2

(3.3)
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Cze =12 5 > h /2
Yoad(2) = { Cysin(k,2), |2| < h/2 (3.5)
_Cye-alE-0D) < o,
where the constants C3 and C) are again to be determined from the

normalization of the function (3.1), i.e. [[¢[*dp d¢ dz = 1. The
constants k, and « satisfy the relation

MN? mat R\ 2mg (Vi — Vi) (R)°

that together with Cauchy boundary conditions and assumed continu-
ity of the wavefunction and its derivative, yields the solutions in the
axial direction.

1
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Figure 3.3: Calculated conduction and valence eigenenergies of a 1.55um quantum
dot epi-structure, along the quantum dot height, h.

Now having properly defined the quantum disk problem, the wave
equations together with eigenenergies can be calculated, Fig. (3.3).
Where the total eigenenergy in the disk is approximated as a sum of
eigenenergies in transverse and longitudinal directions
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P (pa)® B (ki(h/2))”
2mg* a? 2mg*  (h/2)2
The calculation of eigenfunctions and eigenenergies is coded as a single
module that after execution returns not only the elementary solutions

of quantum disk problem but also the calculated overlap integrals be-
tween all the wavefunctions

E,=E,+E. = (3.7)

Iwrp = (U1lhs) = /W “hg dp do dz

(3.8)

— [ s 07 vulp.0) do o+ [n(e) - vnle)
The calculated eigenenergies Fig. (3.3), as well as the overlap integrals
between the wavefunctions, Table (3.1), are calculated by assuming the
flat bands around the individual quantum dots, i.e. with the neglected
effect of the electric field bias.

T | ) [ 1w | ) |
Wcl) 0.9730 | 0.0313 | 0.0319 | 0.0328
\wcg) 0.0320 | 0.9718 | 0.0331 | 0.0340
\1/}63) 0.0341 0.0346 | 0.9678 | 0.0364

Table 3.1: Calculated overlap integrals between first three wavefunctions of the
conduction band and first four valence band wavefunctions

The calculated overlap integrals as weight functions, Eq. (3.8), and
eigenstate solutions are then further passed, as a final result, to com-
plement the calculation of optical gain and refractive index change.
An example of calculated overlap integrals for first few wavefunction
pairs, Table (3.1), for InAs/GaAs quantum dot system, with electron
and hole effective masses of, 0.023-mg and 0.3-m, respectively, implies
that the major contribution to radiative recombination is through or-
thogonal wavefunctions. These values are typically 5 — 10% lower than
ideal unity [7], while in the case of identical electron and hole effective
masses in the conduction and valence band, they would be equal to
unity.
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3.3 Carrier Density
and Quasi-Fermi Levels

In order to calculate the surface carrier densities of the active quantum
dot layers, it is assumed that the surface current densities are known.
From given surface current densities the carrier densities can be calcu-
lated for the given recombination parameters of the active region. If we
assume that the stimulated emission does not affect the carrier density
significantly, i.e. that the device is close to the threshold operating
conditions, the effect of the stimulated emission on carrier density can
be neglected. In case of the ABC recombination model, the simplified
equation for the surface current density can be written in the following

form
nap Nnap ’ Na2p ’
A +B C , 3.9
<Zleff> <Zle,ff> <Zleff> ] 39

where ¢ is the elementary charge, 7;,; the carrier injection efficiency,
Z, the thickness of the total active region, N; number of quantum dot
layers and Zj.¢; the effective thickness of a single quantum dot layer
including the wetting layer. Using the Eq. (3.9), the surface carrier
densities of quantum dot layers can be calculated, where carriers within
the active layers are treated as free, which leads to uniform surface
carrier densities across the active quantum dot layers. Moreover, as
the thickness of the active layer, Zj.;s, is considered as effective if
chosen appropriately it can also account for the lateral carrier density
variation across the active layers.

The stimulated emission component can be added as well, in which
case the surface current density would read

nap nop \ nop \° q Tg(nap)P,
) o) o]
Zieyy Ziefs Zief s Ninj — wsw

(3.10)
where I" is the confinement factor, g(nap) the gain for a given surface
carrier density, P, the output signal power, ws frequency of the lasing
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signal transition and w the width of the laser waveguide. However, to
calculate the carrier densities from Eq. (3.10), the quasi-Fermi levels
would have to be solved numerically at every iteration/increment of
the carrier density in order to determine the material gain in the stim-
ulated emission component. This was unfortunately shown to lead to
slow calculation times. However, by using some of the simple approx-
imations for the suppression of the material gain we can successfully
address this problem in the subsequent time-domain simulation.

To determine the quasi-Fermi levels necessary for the calculation
of material gain and refractive index change, the density of states and
carrier statistics have to be known. Basic expressions relating the
electron and hole carrier densities to quasi-Fermi levels can be written
in the form

n= / pe(E)[(E)dE, (3.11)

p= / pu(E)[1 — f(E)|dE, (3.12)

where n and p are electron and hole carrier densities, respectively,
p(E) and p,(F), the corresponding density of states and f(F), the
Fermi-Dirac distribution containing the quasi-Fermi levels. To simplify
the problem, in the case of parabolic conduction and valence bands, the
electrons and holes can be treated as free charges where their effective
masses, m,. and my, respectively, are used to account for the effect of
the semiconductor crystal structure. For further simplification of the
problem, the conduction and valence band edges within the quantum
dot can be considered as uniform. This naturally strays from reality
as the strain forming between the lattice-mismatched materials leads
to distortion of intrinsic material properties. This can be addressed
with more complex models [23,25], which is however out of the scope
of this work. The aforementioned approximations, apply not only to
calculation of quasi-Fermi levels but also to solving of quantum dot
eigenstate problem described earlier, and to the calculation of material
gain and refractive index change presented in the following section.
The simplified, but still nonlinear equations for the electron and
hole carrier density of the quantum dot array are adopted from [17],
where in case of the 2D electron carrier density the equation reads



30 CHAPTER 3. MODELING OF QUANTUM DOT ACTIVE MATERIAL

—E.P / 20,2 1

nap = N (& - dE,
2D DZ /—2770 / 1+ e(B ~F)/ksT ©
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+ Z o In(1 4 eFemEa)/ksT)y
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(3.13)

and hole carrier density,

Eh —Ey;?) /2071,2 1 !

; dFE),
Vi 27r0h / 1 + e(Fo=E))/kpT 4

W
my" kT W
+> Th? In(1 4 eFv=Fum™)/ksT)

pap=nap=Npy ———
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m
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(3.14)

The Eq. (3.13) and Eq. (3.14), describing the surface carrier densities,
consist of three components contributing to total electron/hole carrier
density. The three components in summation correspond to quantum
dots, the wetting layer and the barrier layer, respectively. In the pref-
actor of the firs component, Np is the surface density of the quantum
dots, 0./, the inhomogeneous broadening of the quantum dots due to

intrinsic variation of dot size, and s/7 the degeneracy of eigenstates
due to the spin and geometrical symmetry. The carrier distribution
within the dots is included under the integral of the first component
as familiar Fermi-Dirac distribution. The remaining two components
describe the wetting layer and the ¢, thick barrier layer between the
active quantum dot layers. The wetting layer is described by the [/m
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energy levels while for the description of the barrier layer a single en-
ergy level was used.

As both of the equations describing the electron and hole carrier
density are nonlinear, the roots of the equations have to be found
numerically. In short, the procedure consist of ramping of the carrier
densities, nsp and pop, in finite steps, while numerical root finding
procedure is executed at each of the ramping steps [26], to solve the
Egs. (3.13,3.14). Moreover, the ramping is continued in this manner
until the root condition is satisfied for varying quasi-Fermi levels of
the conduction and valence band, F, and F),, covering ideally the cases
from maximum absorption to full inversion. Having calculated the
quasi-Fermi levels and solved the quantum dot eigenstate problem,
the material gain and refractive index change, as important parameters
determining the quality of the lasing material, can now be calculated
at different steady states.

3.4 Gain and Refractive Index
Dispersion

Under the lasing conditions, the photons traveling through semicon-
ductor laser cavity experience exponential growth through the process
of stimulated emission. The material gain that makes the lasing possi-
ble, depends on many factors, such as material composition, strain or
material quantization. In all scenarios however, carrier inversion is a
necessary precondition for transition from lossy to gain medium, ful-
filled either through carrier injection or optical pumping of the active
medium.

Considering the refractive index of the active medium as a general
complex function, with its real and imaginary components, i.e. re-
fractive index and material gain/loss related by the Kramers-Kronig
relation, one can calculate the complete complex function by knowing
either of its two components, see Appendix A. As a consequence of this
fact, the linewidth enhancement factor [8], determining the strength of
this coupling and the quality of lasing medium, can also be extracted
with respect to the level of carrier inversion.
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3.4.1 Quantum Dot Material Gain

By adapting the material gain equation Eq. (2.35), for the case of
quantum dot active material one can get for a single quantum dot
layer a somewhat simplified form of the material gain, that is used to
determine the material gain dispersion at varying carrier densities:

N 7Th‘]2 > / A 2 2
o) = i 3 [ Ao Dl ool

X D(E') Ly(E', hw)[fo( E', Fo) — [o(E', Fy)],

where ¢ is the elementary charge, n the refractive index, ¢y vacuum per-
mittivity, and w the angular frequency. The two major approximations
leading to Eq. (3.15), are compressive strain and the orthogonality of
confined carrier wavefunctions of the quantum dot. As the compres-
sive strain within the InAs quantum dots, resulting from the lattice-
mismatched material surrounding it, leads to separation of light-hole
(LH) and heavy-hole (HH) bands, it is assumed that the radiative re-
combination occurs only over C-HH transitions. The orthogonality of
quantum dot wavefunctions allows for further simplification, with over-
lap integrals |(i2]11)|, being ideally zero between the non-orthogonal
wavefunction pairs, can be also neglected in these cases without loos-
ing on generality. In the end, this explains the simple summation over
single index ¢, that accounts only for the radiative transitions of the
form C;-HH;, with ¢ being the index of the orthogonal quantum dot
wavefunctions.

The degeneracy of quantum dot states in Eq. (3.15), is included
within the density of states, where D(E’) reflects the Gaussian or
rather inhomogeneous broadening of the spectral lines, stemming from
the intrinsic variation in dot size. The inhomogeneous broadening can
be defined as

st 1 —(E' - FE,.)
D(E) = 3.16
) = Vet ot < 207 ) (3:16)

dot

and the Lorentzian component L,(E’, hw), reflecting the homogeneous
broadening as
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™y [1 + (E ”“)1

where s’ is the state degeneracy and V;oif = h/Np, the effective volume
of quantum dots, with h being the dot height and Np the surface
density of quantum dots.

Ly(E' hw) =

7 (3.17)

3.4.2 Refractive Index Change

The change in material gain/loss caused by filling of the carrier states
in conduction and valence band, results in coupled change of the re-
fractive index, see Appendix A. Having derived the equation for the
material gain of quantum dots, it is not difficult to obtain the expres-
sion for the refractive index change, via Kramers-Kronig relation, that
causes the phase distortion of the laser field, and thus the increase
of spectral linewidth. To this end, it is sufficient to transform the w
dependent components in Eq. (3.15), i.e. the Lorentzian L,(E’, fiw)
and the prefactor before the sum. By performing the Kramers-Kronig
transform of the Lorentzian

1 Kramers—Kronig —WT
1+ w?r? 1+ w?r?’
the resulting expression for the refractive index change can be written
as

(3.18)

7.‘_22
) = o 2 e plu [l
X DU YLE K[, F) ~ Fu(E', ),
(3.19)

where L,(F’, hw) is the Kramers-Kronig transform of the Lorentzian
Ly(E', hw). Having calculated both the material gain and the refractive
index change, the linewidth enhancement factor (LEF), a-factor, can
be computed easily as well:
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o = AT Ine/ON (3.20)
A 0g/ON
with NV being the injected carrier density in the active region. The LEF
calculation is done numerically, where dn./ON and 0g/ON gradients
are approximated by performing the gain and refractive index calcula-
tions with finitely small increments of the injected carrier density N,
around the considered steady state.

3.5 Calibrating the Gain Model
Parameters

Under the approximations of quantum dot model described in this
chapter, one can successfully extract all the relevant parameters nec-
essary for laser simulation in frequency or time domain. However, to
apply the model to fabricated lasing diodes some calibration of the
input parameters is necessary. The calibration can be split into three
major problems: the level of homogeneous and inhomogeneous spec-
tral broadening, degeneracy of the quantum dot energy levels and the
strength of interaction between the conduction and valence band states
described by the transition matrix element. For this purpose the avail-
able experimental data in [27-29], was used to study the implications
of different parameters and calibrate the gain model before the time-
evolution of the laser problem with traveling wave model.

3.5.1 Spectral Broadening in Quantum Dots

The spectral broadening mechanisms within a three-dimensional quan-
tum dot array can be categorized by their selectivity, i.e. whether they
affect all quantum dots within the array uniformly or vary from quan-
tum dot to quantum dot. The homogeneous broadening that can be
considered to apply to all quantum dots the same, and stems mainly
from the uncertainty principle, that is intrinsic to quantum mechanics,
and the many-body effects that are present at high carrier densities,
typical for the operating laser diodes. On the other hand, the inho-
mogeneous spectral broadening is not directly related quantum nature
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of the charge carriers but is a result of the variation in quantum dot
size, that results in the variation of eigenenergy solutions to quantum
mechanical problem of the dots, Fig. (3.4).

|| | >ESl

— — —
Gain

Energy

Figure 3.4: Illustration of quantum dot geometry variation and its effect on eigenen-
ergies and material gain dispersion.

The homogeneous broadening being a property of nature itself, it
always has to be present to certain extent. Whereas the inhomoge-
neous broadening is fixed to technology, i.e. to the Stranski-Krastanov
epitaxial growth that is commonly used, under which the quantum dots
are spontaneously self-organized and generated by the effects of ma-
terial strain. However, the same process also leads to spontaneously
defined quantum dot size that has a certain variance to it. Within
the previously described quantum dot gain model, the homogeneous
and inhomogeneous broadening are included by ~ and o factors, re-
spectively, in Eqs. (3.13, 3.14, 3.17, 3.16). In practice however, the
two broadening mechanisms are characterized by the full width at half
maximum (FWHM) of the respective Lorentzian and Gaussian curves.
The parameter v, for homogeneous broadening is directly related to
the FWHM as

FWHM),pm. = 2 - 7, (3.21)

while the variance of inhomogeneous broadening relates to the FWHM
of the Gaussian curve as

FWHM,hom. ~ 2.35482 - o, (3.22)

where the spectral variance with contributions of both electrons and
holes reads
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o’ =02+ 0, (3.23)
For further results in the text, the FWHM of the homogeneous and
inhomogeneous broadening are considered to be 10 and 50 meV [16],
respectively, unless it is specified otherwise. Moreover, the energy
levels to which the spectral broadening is added are a solution of ap-
proximate quantum disk problem, meaning that they would also have
to be adjusted for accurate device simulation. For this purpose the
experimental data in [27], was used to calibrate the calculated energy
levels of the quantum dot, as the same epitaxial structure was used in
Ch. 5 to study the spectral linewidth and related effects in 1.55 um
quantum dot injection lasers.

3.5.2 State Degeneracy in Quantum Dots

Considering that the symmetry group of quantum dot translates to
the symmetry of the Hamiltonian, the accurate representation of dot
geometry is essential in determining the spectrum of the energy levels
of the quantum dot. The symmetries can be generally classified into
discrete and continuous. An example of discrete symmetry is a mirror
symmetry while rotation would be an example of continuous symmetry
[30]. A set of unitary operators that preserve the scalar product of the
eigenstates, form a symmetry group of the respective AHamiltonian.

Mathematically, for a unitary operator in Hilbert space, U, this implies

(D) = (Us|Up) = ($|UTT) = (p]), (3.24)

and in the case of Hamiltonian a commutation

UHU = H, ie [H,U] =0. (3.25)

As a corollary it can be shown that for a unitary operator U , which
commutes with a Hamiltonian H, this leads to the concept of degener-
ate eigenstates. In other words, for an eigenstate [¢)), of a Hamiltonian

H, it follows that the eigenstate U[i) will be an eigenstate with the
same eigenvalue. This can be expressed as

H(UW)) = UHW) = EUy)). (3.26)
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Parameter Value
Number of quantum dot layers, 1V, 5
Quantum dot density, Ny 3.25-10' cm~2
Quantum disk height, i 2 nm
Effective active layer thickness, Zl.rf 1 nm
Electron effective mass (InAs), m. 0.023 - myg
Heavy-hole effective mass (InAs), my, 0.3-mg
Homogeneous broadening (electrons and holes) 15 meV
Inhomogeneous broadening 10 meV
Confinement factor, I' 0.0225
Effective refractive index, ncyy 3.23

Table 3.2: Gain model parameters of the 5QD-layer epi-structure

In the case of quantum dots, either for the sake of simplicity or
merely to demonstrate some general properties of quantum dots as ac-
tive laser material, their geometry is often approximated with a three-
dimensional quantum box [7,15], or the degeneracy of energy levels
is heuristically determined [16,31]. From the equations describing the
material gain and refractive index change of the quantum dot system,
Egs. (3.15, 3.19), it can be seen that the degeneracy of the eigen-
states enters both equations through density of states, affecting not
only the gain and refractive index of the quantum dot material but
also the linewidth enhancement factor that is a consequence of their
coupling through Kramers-Kronig relation. To study the importance
of eigenstate degeneracy we can compare a few calculations of material
gain dispersion for 1.55 um system with five quantum dot layers, us-
ing the gain model parameters given in Table (3.2). The confinement
factor in Table (3.2), is given for a uniform 3 nm thick active layer,
while the effective confinement factor is naturally lower as the irregular
positioning of the quantum dots needs to be taken into account.

The calculated material gain dispersion, depicted in Figs. (3.5,3.6),
for two different degeneracy sets of the first three carrier transitions
suggest that higher degeneracy of elevated states, ES1 and ES2, also
leads to higher material gain at corresponding frequencies. However,
the experimental results reported in [27], with all three carrier tran-
sitions inverted, show reduced material gain at higher energy transi-
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Figure 3.5: Modal gain of five QD-  Figure 3.6: Modal gain of five QD-
layers with level degeneracies of GS, layers with level degeneracies of GS,
ES1 and ES2, being 2, 2 and 2, respec-  ES1 and ES2, being 2, 4 and 4, respec-
tively. tively.

tions. Naturally, one could question now the higher number of degen-
erate states for elevated quantum dot energy levels. Considering that
the higher degeneracy stems from the symmetry of the quantum dots,
one explanation for this phenomenon would be an imperfect geometry
of quantum dots deposited by Stranski-Krastanov growth. From the
available SEM images of the self-organized quantum dots, one can no-
tice that the real dot geometry strays from the ideal truncated pyramid
or cubical quantum dot, which makes the standard double degenerate
energy levels statistically more likely. Aside from reduced symmetry of
quantum dots, other factors that perturb the solution of Schréodinger
equation include the presence of material strain between lattice mis-
matched materials or under operating conditions, the electric field be-
tween the laser contacts.

To further elaborate the issue, we could also investigate the dis-
persion of the linewidth enhancement factor of the same quantum dot
system, without the contribution of the wetting and barrier layers as
it was described in 3.4.2. The contribution of elevated energy levels
to linewidth enhancement factor can be significant nevertheless [29],
however, for the study of importance of the state degeneracy we will
limit the problem to quantum dot itself and its three main conduction-
heavy hole (C-HH) carrier transitions. In Figs. (3.7,3.8), comparing
again the same degeneracy sets as for the gain dispersion, one can
also notice a distinct difference in the linewidth enhancement factor.



3.5. CALIBRATING THE GAIN MODEL PARAMETERS 39

g
o
w

o —2.6501 - 10'® [cm ™3] = —2.6501-10'8 [em™]

g ol |—49367 10" em £ 2.5 |—49867-10"[cm™

R —7.3842. 10" [em ™ 8 —7.3842- 10" [cm™)

E Y -t 10" [em ™) g 21| —11.5284-10"® [em ™)

£ £

@ @

o o

c <

I 5

= <

< =

o 5}

< <

b} 5

: :

0|
£ £ 0
_01180 1500 1520 1540 1560 1580 1600 _01180 1500 1520 1540 1560 1580 1600
A [nm] X [nm]

Figure 3.7: Linewidth enhancement  Figure 3.8: Linewidth enhancement
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In case of the standard double degenerate eigenenergies, for the first
three energy levels, linewidth enhancement factor amounts to roughly
0.6 at the ground state transition, whereas in case of the increased
state degeneracy it doubles to 1.2 at the same wavelength. Both of
these values can be considered lower than what is usually reported
for bulk and quantum well materials. However, below threshold or
rather when the contribution of the wetting layer due to the Pauli
blocking effect is low, measurements tend to show better matching of
the linewidth enhancement factor at the ground state wavelength for
the case of standard double degenerate eigenstates [29], which is where
the gain model described here can be considered to have better overlap
with measurements, as it does not include the gain contribution of the
wetting and barrier layers.

3.5.3 Transition Matrix Element

When it comes to the transition matrix element, some parameter tun-
ing is also necessary as the transition matrix element that determines
the carrier transition probability between the conduction and valence
bands depends on the quantum dot geometry and strain that are sta-
tistically defined. By definition the transition matrix element, Eq.

(3.27), is comprised of two components: |(u.|& - p|u,)|?, the transition
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strength between conduction and valence band including the polariza-
tion dependence and the envelope function overlap integral, |{1s|11) |2.

“ | {alion) (3.27)

We need to express the transition matrix element, Eq. (3.27), giv-
ing the transition probability between conduction band Bloch func-
tion and valence band Bloch functions (upp, ts, tso), in terms of the
momentum matrix element |M|?, that gives the transition probabil-
ities between conduction band Bloch function and three basis Bloch
functions related to three p atomic orbitals, (p.,p,,p.). In practice
the momentum matrix element can be measured accurately using the
electron spin resonance techniques [7], or from theory by using the
k - p perturbation method. For simplicity we will assume the car-
rier transition near the band gap where the transversal component of
the electron k-vector equals zero while the parameters of the transition
matrix element can be adjusted by relying on the experimental results,
to compensate for the adopted approximations. By expanding the va-
lence band Bloch function w,, in terms of basis Bloch functions one
can express the transition matrix element for three valence subbands
(Uph, Ui, Uso), 10 terms of the momentum matrix element [7]:

2 _ N
|Mr|” = [(uc|é - pluy)

, 5(1— |1:< ~&)%) - [MP2 - |[(ws]n)]?, for HH band
(Mr|* =< L~k &) - |MJ? [(¢sl¢)]”, for LH band  (3.28)
3 IMP-|( o), for SO band

The Egs. (3.28) reveal the polarization dependence of the transition
matrix element, where the interaction strength between the electron
and photon depends on the angle between the electron k-vector and
the electric field polarization unit vector, €. However, other than this
theoretical remark, these simple relations do not provide much help
in terms of practical use with the quantum dot gain model. For this
purpose it is necessary to consider the effects of the quantization and
polarization.

In the simple case of free electrons, where the envelope function can
be described by a simple plane wave, the polarization factor |k-é|* can
be easily determined with respect to the angle between the electron
and electric field unit vectors. Following from this simple example one
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can find that the transition matrix element gives the maximum for
perpendicular unit vectors in the case of C-HH transition, while in the
case of C-LH transition when the unit vectors are parallel. However,
as it was shown in section 3.2.2; in the case of quantum dots the
envelope function is comprised of multiple plane waves even for the
approximate quantum disk model while in reality the exact geometry
also varies from dot to dot. For this reason, we bypass the stochastic
problem of varying dot geometry and the Hamiltonian by describing
the factors preceding |M|?, in Eq. (3.28), with a single factor, ¢, that
can be used to fit the gain peak calculated with the quantum dot gain
model to available experimental measurements.

|Mz[* = & [M? - [(alpr) (3.29)

By using the transition matrix in form of Eq. (3.29), with the quan-
tum dot gain model we essentially compensate for the approximation
of the dot geometry and fit the average polarization and quantization
contributions to the transition matrix element by a single factor, &.
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Figure 3.9: Modal gain of two QD-  factor of two QD-layers with all three

layers with all three energy levels, GS,  energy levels, GS, ES1 and ES2, being
ES1 and ES2, being double degenerate.  double degenerate.

After a few iterations, using the developed quantum dot gain model,
we estimate the ¢ factor to 3.1, where a vectorial mode solver is ap-
plied to determine the confinement factor of the active layers. Using
the parameters given in Table (3.3), the dispersion of gain and line-
width enhancement factor of a non-lasing quantum dot material show a
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Parameter Value
Number of quantum dot layers, NN} 2
Quantum dot density, Ny 3.25-10'Y ¢cm—?
Quantum disk height, h 2 nm
Effective active layer thickness, Zl.y 1 nm
Electron effective mass (InAs), m, 0.023 - myg
Heavy-hole effective mass (InAs), my, 0.3 -myg
Homogeneous broadening (electrons and holes) 15 meV
Inhomogeneous broadening 10 meV
Confinement factor, I 0.009
Effective refractive index, n.ss 3.23

Table 3.3: Gain model parameters of the 2QD-layer epi-structure

good overlap with available experimental results [28,29]. As the study
of spectral linewidth presented in later chapters relies heavily on the
high-gain InAs quantum dot system described in [28], the published
experimental results are used to calibrate the gain model accordingly,
Figs. (3.9,3.10). The results in [28], allow us mainly to calibrate the
peak modal gain, the internal losses and the qualitative behavior of
the gain dispersion, while the calibration of calculated quasi-Fermi lev-
els and the recombination parameters is performed by relying on the
measured LI-curves of the laser samples based on the same epitaxy,
Ch. 5. To stay consistent with the gain model, described in section
3.4, for simplicity only the C-HH carrier transitions are considered for
the transition matrix element.

3.5.4 Pauli Blocking Effect
and Linewidth Enhancement

By introducing the quantization in semiconductor materials, Fig. (3.1),
it is theoretically possible to achieve Dirac-like density of carrier states.
Compared to bulk semiconductor material, this allows for confinement
of the carriers to narrow energy-bands which results in higher dif-
ferential and modal gain in semiconductor lasers. In directly mod-
ulated quantum dot lasers these features allow for high modulation-
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Figure 3.11: Illustration of ideally symmetric gain dispersion, leading to zero line-
width enhancement factor at gain peak through Kramers-Kronig relation.

bandwidths. As an accompanying feature, high symmetry of the quan-
tum dot material gain is often present, which can lead to a very low
linewidth enhancement factor compared to the quantum well and bulk
lasers.

High material gain symmetry results mainly from the narrow den-
sity of states and a relatively high separation of quantum dot ground
state and elevated energy states, while resulting low linewidth enhance-
ment factor can be explained by the Kramers-Kronig relation, which
links the material gain and refractive index change under carrier injec-
tion. Low linewidth enhancement factor is related to narrow spectral
linewidth and low frequency chirp or rather better dynamic properties
altogether, with both direct and external modulation of the laser light.

However, the highly idealistic case depicted in Fig. 3.11, often
diverges from reality. Ideally symmetric material gain can be shown
to lead to zero linewidth enhancement factor, as the refractive index
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change in that case is also zero at the gain peak, causing no addi-
tional phase shift to the laser light. As it is demonstrated by measure-
ments [21,29], very low linewidth enhancement factor can be achieved
near the lasing threshold in quantum dot semiconductor lasers. From
the same results it can be also noticed however, that at higher in-
jection currents, the non-resonant carriers in elevated energy states
contribute significantly to the linewidth enhancement factor. As a di-
rect consequence of the Pauli exclusion principle and a limited number
of quantum dots in the active region of the laser, the injected carriers
unable to occupy the quantum dot ground state, inevitably find their
place in one of the elevated quantum dot states or in the wetting layer.
This effect, better known as the Pauli blocking, leads to increasing
asymmetry of the gain dispersion with increasing injection current, as
the non-resonant carriers accumulate in the wetting layer and thus in-
crease the material gain on the high-energy side of gain dispersion. As
a result, if one seeks to minimize the laser linewidth through linewidth
enhancement factor, the laser design should ensure the low saturation
of quantum dot ground state to prevent the negative effect of Pauli
blocking. In terms of gain threshold of the laser diode this translates
to carrier clamping at lower gain values, which can be achieved either
through higher material gain peak by increasing the number of active
quantum dot layers or by increasing the quality factor of laser cavity.
Following from the Schawlow-Townes spectral linewidth equation,
Eq. (1.4), a narrow linewidth that is of interest in optical communi-
cations unfortunately does not occur at lasing threshold but at higher
output powers where Pauli blocking as well as the other negative ef-
fects become significant [32,33]. For this reason, the quantum dot
gain model described here, has to be complemented with an appropri-
ate linewidth enhancement factor model that takes into account the
distortion of the gain dispersion and linewidth enhancement factor at
higher injection currents caused by the carriers accumulating at higher
energies. For this purpose a rate equation based model, derived by S.
Melnik et al. [34], is implemented together with the gain dispersion
model in the QD-wave laser simulator, to describe the evolution of the
spectral linewidth with increasing injection current more accurately.

Yd pin — 1+ pin
C(l—pm)®  2pm—1

Jae
apy/am = F(Wmin) = aa + oy i (3.30)
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The complementing linewidth enhancement factor model is based on
the quantum dot representation, comprised of one nonresonant carrier
population, representing the wetting layer and other elevated energy
states, and the quantum dot ground state. Such a representation of the
quantum dot system leads to an elegant analytic form for the modified
linewidth enhancement factor, Eq. (3.30). The modified description
includes both the intrinsic linewidth enhancement factor a4, calculated
by the quantum dot gain model and the linewidth enhancement com-
ponent a,,, due to the nonresonant carriers at higher energy levels.
Other parameters include: quantum dot population at threshold py,,
carrier decay rate within the quantum dot 74, carrier capture rate from
the wetting layer to quantum dot C', and the injection and threshold
current densities, Jy. and Jy, respectively. A more complex descrip-
tion could consider the variation of quantum dot size [32], however
this would require a numerical estimation of the problem, which would
thus degrade both the elegance of the solution and the simulation time
of the time-domain laser simulation that is already critical in case of
the narrow spectral linewidths [14], found in modern semiconductor
lasers.
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Chapter 4

Dynamic Modeling of
Semiconductor Lasers

Aside from the quantum dot gain problem discussed in the previous
chapter, here we describe in detail the remaining two modules of the
laser simulator, dedicated to the traveling wave simulation and noise
analysis. The developed multi-section simulator for edge-emitting laser
diodes is based on the time-domain traveling wave (TDTW) model,
popularized initially by Carroll et al. [35]. Instability of the transver-
sal mode is neglected, and therefore only the fundamental TE;; mode
is considered for the transversal problem. This allows for great sim-
plification and economy of computational resources, by separating the
edge emitting laser problem by spatial variables into transversal and
axial problems. Transversal problem is solved by the already available
finite element solver while the axial problem is addressed in greater de-
tail by developing a custom edge-emitting laser simulator taking into
account various effects relevant to the spectral linewidth of the laser
diodes.

4.1 Organization of the QD-wave
Laser Simulator

The dynamic laser simulator developed for the purpose of investigat-
ing the quantum dot based lasers can be split into three major logi-

47
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cally separate modules: module for calculation of static quantum dot
properties, module for actual time evolution of the laser problem and
the module for small-signal noise analysis. To minimize the simulation
time, computationally demanding module for the time evolution of the
laser problem is parallelized for efficient execution using the OpenMP

library [36].

- Solving the eigenstate problem
for the approximate QD
geometry

- Calculating the dispersions of
material gain and refractive index
change under carrier injection

- Extraction of intrinsic linewidth
enhancement factor

- Fitting the gain and refractive
index dispersion with IR digital
filters

- Evolution of the laser problem
using the traveling wave model

- Postprocessing: extraction of LI
curve, output spectrum, mode
tuning, switch-on time etc.

- Importing the modal gain and
field profile along the laser axis
for small signal analysis

- Solving the system of ODEs
and calculation of RIN-Noise and
FM-Noise spectra and spectral
linewidth

Quantum Dot
Heterostructure

Traveling Wave
Laser Model

Noise Analysis

Figure 4.1: Three modules of the QD-wave laser simulator with corresponding
operations performed within each of them.

e Quantum Dot Heterostructure problem consists of the solv-

ing of eigenstate problem of the approximate quantum dot geom-
etry and the extraction of steady state parameters of the quan-
tum dot array for varying carrier densities. The extracted param-
eters include: material gain, refractive index change, linewidth
enhancement factor and the carrier inversion factor. After the
calculation, extracted parameters are saved for a limited wave-
length range in a matrix form, that are forwarded as an input to
the traveling wave module performing the time evolution of the
laser problem.

Traveling Wave Module Multiple dispersion curves of the ma-
terial gain and the refractive index change are first imported, to-
gether with other relevant parameters. The imported dispersion
curves are continuously interpolated during the traveling wave
simulation to account for the spatial hole burning effects. The
major simulation results after the time evolution include: axial
electric field and carrier density profiles, as well as the carrier
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density and electric field time traces at both facets. The fre-
quency spectrum, luminescence-current curve and mode tuning
can be extracted within the postprocessing step after the DC
sweep of the injection current. The time evolution module can
also be used with other gain models; i.e. it is not limited to the
quantum dot problem for which it was developed. The gain and
the refractive index dispersions are approximated with a set of
infinite impulse response (IIR) filters while an option for a single
Lorentzian ITR gain model is also available in case that the gain
dispersion curves of the heterojunction problem are not available.

e Noise Analysis is based on the small-signal laser model, and
was developed due to the shortcomings of the traveling wave
method. Namely, because the direct extraction of the narrow
linewidth characteristic of the quantum dot lasers would require
impractical simulation time. The module is developed after the
work of B. Tromborg et al. [37,38], which was motivated by nar-
row linewidth observed in external cavity lasers. After the time
evolution with the traveling wave model, the module imports
the extracted axial carrier density and electric field profiles, from
which the spectral linewidth, RIN and FM-noise spectra are cal-
culated.

4.2 Transversal and Axial
Problem Separation

The electromagnetic problem of the edge emitting laser is essentially a
waveguide problem with resonance along the longitudinal axis, either
as Fabry-Pérot resonant cavity or with distributed feedback mirrors.
For a laser with the uniform geometry of cross section, the resonating
field is generally a superposition of resonating eigenmodes, and can be
expressed as a product of its transversal and longitudinal components:

E(x,y,2,t) = Ey(v,y) - Ey(z,1), (4.1)

which is a basic property of the Helmholtz wave equation that governs
the problem:
V?E + e(z,y, 2)ko’E = 0, (4.2)
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Figure 4.2: Illustration of a Fabry-Pérot edge emitting laser diode.

where € is the permittivity, and ky the free space wave number. By
relying on the separation of variables, Eq. (4.1), one can derive the
wave equation for the transversal problem:

(j— T j—) Ev(n.y) + [e(o )k — IEu(z.y) =0, (43)

where (5 is the propagation constant. The transversal resonance prob-
lem, Eq. (4.3), can be effectively solved numerically. Even though
there are analytical approximations available [7], for the problem of
ridge waveguide comprising many different materials it is often most
accurate approach to use the numerical electromagnetic mode solvers.
Numerical electromagnetics as an extensively developed branch of nu-
merical simulations offers many commercial tools for the problem of
resonant eigenmodes. For the purpose of this thesis the semiconductor
device simulator, Synopsys Sentaurus Device', was used to determine
the properties of the transversal mode.

E(z,y,z,t) = Ei(z,y) [F(z, t)e* 4 R(z, t)e_woz] g iwol (4.4)

The problem of axial field propagation is modeled by separating the
resonant field into forward and backward propagating waves, F(z, )

Lwww.synopsys.com
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and R(z,t), respectively. The problem is effectively adapted to nu-
merical simulation by performing the slowly varying envelope approx-
imation (SVEA), Eq. (4.4), around a reference frequency wp, which
ultimately yields the traveling wave equations. This allows for great
economy of computational resources as the field envelopes, F'(z,t) and
R(z,t), are slowly varying in both space and time, allowing for more
coarse discretization in both space and time.

4.2.1 Transversal Mode Problem

The problem of transversal resonance in terms of cold-cavity approxi-
mation, where the refractive index profile describing the ridge waveg-
uide problem is considered to be invariant under the operating condi-
tions of the laser diode.

34 33 32
-~

&

[pem]

Figure 4.3: Fundamental TE mode intensity profile and refractive index profile of
a five-layer quantum dot Fabry-Pérot laser.

Aside from the index variation due to the layered nature of the edge-
emitting laser diodes, an appropriate description of refractive index
should also consider the variations resulting from periodic grating de-
sign, operating conditions and nonuniform geometry along the laser
axis:

=

n(2,y, 2,w) = n(2,y,w) + on(z, y, z,w). (4.5)
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By using the cold-cavity approximation however, we essentially neglect
the effect of operating conditions on the material properties as well as
the longitudinal variation of the refractive index profile, on(z,y, z,w),
by solving for eigenmodes in a single transversal cross section of the de-
vice, thus making it suitable only for isolated sections of the photonic
device. For this reason, in case of the multi-section devices the pro-
cess of determining the mode properties and respective confinement
factor should be iterated for each section of the device. By solving
for transversal eigenmodes we determine the effective refractive index,
Neff, as an eigenvalue, and mode intensity profile as an eigenfunction
of the problem. The typical ridge waveguide design is often designed to
support only the fundamental mode Fig. (4.3), while generally it can
support a multitude of eigenmodes with respective intensity profiles
and refractive indices. The main advantage of the ridge design sup-
porting only the fundamental TE;g mode, can be seen from the far field
profile, Fig. (4.4), which enables superior coupling to concatenating
photonic elements. For simplicity we neglect the heating effects that
can alter the refractive index profile and cause the mode instability.
This problem is unfortunately exacerbated at higher injection currents
and output powers, and while not considered within this thesis, it can
be potentially included in future work as one of the relevant effects.
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Figure 4.4: Comparison of simulated and measured far field of a 5QD-layer epi-
structure with 2 pm wide ridge and no grating layer included.
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To verify the simulation parameters and accuracy of the numerical
model, we rely on the measurements of effective refractive index and
far field of the ridge waveguide laser. In essence one could also mea-
sure the refractive indices of all semiconductor alloys used during the
epitaxial growth that can depend on the technology used as well as the
laboratory conditions. However, during the optimization and testing
of the laser design, the characterization of individual materials can be
considered tedious and inefficient. Having the appropriate technology,
the most straight forward approach to qualitatively validate the nu-
merical model would be to measure the far field of the laser diode. The
comparison of simulation and measurement results, Fig. (4.4), shows
a good agreement with the measurements over a wide span of hori-
zontal and vertical angles for a 5QD-layer epi-structure. The material
parameters are instead gathered from different sources containing the
analytical models as well as the experimental measurements of refrac-
tive indices for the relevant semiconductor compositions [39-42].
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Figure 4.5: Vertical cut of the numerical model showing refractive indices used for
the transversal mode problem, starting from ridge on the left down to InP substrate,
with included InGaAsP etch-stop layers to define the lateral surface grating.

The full epitaxy structure is depicted in Fig. (4.5), with materials
and refractive indices which were used to obtain the numerical re-
sults for the transversal problem of Fabry-Pérot ridge waveguide, Figs.
(4.3,4.4). The InGaAsP layers can be omitted for the Fabry-Pérot
case but we include them in Fig. (4.5), as the same epitaxy is used for
the device samples in Ch. 5, to benchmark the (QD-wave simulation
model. In general case the InGaAsP layers can be used to define the
lateral DFB grating in order to produce the single-mode emission.
Aside from determining the effective refractive index of the transver-
sal mode, the solution of the transversal mode problem can be used
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to extract other important properties useful for subsequent traveling
wave simulation, these include the confinement factors of active region:

_ fAR |El(x7y7w)|2

Lar = , (4.6)
S | BL (2, y, w) 2
and optional distributed feedback grating Fig. (5.1),
E x? y? w 2
Tprp = fDFB| 1 ( )| (4.7)

S B2,y w)?
The confinement factor of the active region is crucial for the proper
modeling of the modal gain and also represents an optimization factor
if we want to maximally utilize the active layers of the laser diode.
The same can be said for the confinement factor of the grating, which
is directly proportional to the coupling coefficient of the distributed
feedback grating:

Kk = k(n1,n2, T prp), (4.8)
and together with the refractive indices of alternating grating materi-
als, ny; and ny, it determines the coupling strength of the distributed
feedback grating, Eq. (4.8). The photonic devices used to benchmark
the developed laser model for example, Ch. 5, are all based on lateral
surface Bragg gratings that provide the necessary frequency selective
feedback [43]. Typical laser diode design often relies on buried feed-
back gratings to provide the feedback. However, the processing often
includes multiple epitaxial growth steps, thus making them costly and
complicated to produce. The lateral Bragg grating requires a single
epitaxial growth step which simplifies the processing not only by ex-
cluding the additional growth steps but also by excluding the interme-
diate preparation of the surface. The grating design and its properties
are studied in greater detail in Ch. 5 with other numerical and exper-
imental results.

4.2.2 Traveling Wave Equations

To make use of the wave equation for electric field, Eq. (2.21), it is
necessary to adopt some approximations in order to obtain the trav-
eling wave equations describing the forward and reverse propagating
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field envelopes on the longitudinal axis, which are in the end solved
numerically. We can start by writing the general wave equation in the
frequency domain:

PEy | W’ LAy :
L 0f) ik w)* + A, 2) + iDL By = -

o(w) w_2

LBy,

(4.9)
where n(w) and k(w) are the background effective refractive index and
extinction coefficient of the lasers waveguide. The major difference
compared to the Eq. (2.21), is the inclusion of the confinement factor
of the active material, I', as the active material in semiconductor lasers
often occupies only a fraction of the waveguide, and the refractive
index variation through Bragg grating, An, which is responsible for
the coupling of the forward and reverse propagating wave components.
As a consequence of the slowly varying envelope approximation the
electric field in frequency domain can be decomposed as:

Ej(z,w) = F(z,w)e"™ + R(z,w)e . (4.10)

In general it can be assumed that k < n, which additionally simplifies
our problem and defines the wavenumber as § = wn(w)/c. After the
substitution of Eq. (4.10) into Eq. (4.9), the problem can be separated
for the forward and reverse propagating components as:

OF B2 — By a(w) . W
—_— = F F— ik =i—1IP 411
0z ! 2ﬁ02 + 2 ZKRFR 22[306002 r ( )

OR B2 — B a(w) , LW
- R R — F=i—=TP 4.12
P 25,* N 2 ER ZQ[J’OEOCZ o (4.12)

where the polarization and the coupling of the Bragg grating are aver-
aged over the length Az, which is longer than the optical wavelength
but much smaller than the cavity length:

1 z+Az/[2 )
Pr/ip = —— P(z, w)eTP*dz, (4.13)
Az 2—Az/2
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w2 1 /2+Az/2 AnZ ]
K = —— — T2z, 4.14
REIFR = 2 Az —az2 260 (4.14)

Using the coupled-mode theory one can derive a simple expression for
the coupling coefficient of the distributed feedback grating [7,43]:

ko 5 5 sin(mmy)
- —n3) Tppp - 2TY) 4.15
2ner; (ny =ni) - Tprp - ————, (4.15)

K

The equation requires the knowledge of the grating confinement fac-
tor, I'ppp, the effective refractive index of the guided mode n.ys, the
refractive indices of successive grating materials, n; and no, order of
the grating m, and filling factor of the grating v. With the buried
laser gratings being more represented in commercial designs, it is also
common to find in the literature the Eq. (4.15) in simplified form,
adapted to buried grating design:

H:ko(RQ—nl)'FDFB'M. (416)
™m

The Eq. (4.16) relies on the fact that in the case of buried gratings
the refractive indices of successive grating layers are comparable to
the effective index of the transversal mode, i.e. 2 nerr >~ (ng + nq).
This of course simplifies the estimation of the coupling coefficient by
completely bypassing the need to solve the transversal mode problem
numerically. Even though this approach can give satisfying results in
the case of buried gratings, it can lead to significant overestimation of
the coupling coefficient in case of the lateral grating design [43]. Con-
cerning the internal losses a(w), by assuming that the semiconductor
loss angle is small, i.e. d5 =~ tand,, the internal losses can be charac-
terized as a = 53, where in terms of the elementary parameters we
have:

2k
== 2 (4.17)
c €one

a(w)

Finally, if we approximate the internal losses and coupling coeffi-
cient as frequency invariant, i.e. o = a(wy) and k = k(wp) and the
wavenumber S with the first two terms of its Taylor expansion, we can
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write out the well known traveling wave equations by transforming the
Egs. (4.11,4.12) back into time domain:

10 0 L Wwo o )
(vgat + 62) F(z,t) = Z2neocFPF(Z’t) - §F(Z’ t) +ikprR(z, 1),
(4.18)

(LQ _ ﬁ) R(z,1) = ig 2T Pa(z,t) = SR(z,1) + ixrF(2,1)

nepc

(4.19)
As we have derived the traveling wave equations from the semi-classical
wave equation, Eq.(4.9), the contribution of the spontaneous emission
noise is still not included in Egs. (4.18,4.19). By adding the noise
terms and expressing the material polarization in terms of net modal
gain and detuning factor, (¢ — id), the traveling wave equations that
we implement numerically can be expressed as:

(vig% + %) F(Z7t) == (g—i(s)F(z,t)‘f'iKRFR(th)J'_F?P(th)v (420)

(1;: - j) R(z1) = (g=i8)R(z,t) FinrrF (z.1) + Fy(2.1). (4.21)

The modeling of laser diodes in time domain via advection equa-
tions initially popularized by J.E. Carroll et al. [35], just like real semi-
conductor lasers is based on spatially and temporally varying sponta-
neous emission noise, Fyy(z,t), as a driving force which enables the
coherent lasing in active laser medium. The left hand side of both
equations, Eq. (4.20) and Eq. (4.21), represents a standard hyperbolic
advection equation while the right hand side contains all the sources
and sinks in a finite volume of laser cavity. The amplified and de-
tuned electrical field, (g —i0)F(z,t), the field coupled via gain and/or
refractive index grating, ikgppR(z,t), and Langevin forcing term for
spontaneous emission noise, Fy,(z,1).
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The dispersion of gain factor, (g — id)F(z,t), is not intrinsically
included in the traveling wave model as the advection equations are
described in time domain. Nevertheless, with the help of digital filter
theory it is possible to form satisfactory digital filter models for disper-
sion of modal gain, g, and detuning factor, id, which are often available
in frequency domain. Successful realizations of this approach can be
also found in some commercial laser diode simulators 2. Following the
solution of transversal mode problem, the coupling coefficients, krp
and kg, can be easily estimated while the forcing term for the spon-
taneous emission noise, Fyy(z,t), is included in the framework of the
Langevin dynamics, to account for the microscopic degrees of freedom
which are often neglected in traditional rate equation models.

Much like standard coupled photon and carrier rate equations, the
advection equations are coupled with carrier rate equation, based on
the ABC recombination model, which in its simplest form reads:

% N Lin;
dt q V;Lct

Ug Gmat P

—(A-Ny+B-Ng>+C-Ny?
(A-No+ o+ ") 1+€P

+Ey(z,t), (4.22)

where ¢, is the material gain, € the nonlinear gain saturation coeffi-
cient, P the photon density and Fy(z,t), the Langevin noise term for
carrier noise. In this way we are also able to extract the characteristic
laser parameters, light-current dependence and time evolution of both
photon and carrier density. However, unlike the standard rate equation
approach, the traveling wave approach intrinsically includes the spatial
hole burning effects as well the spatial variation of characteristic laser
parameters. It should be noted that the carrier density Ny(z,t), does
not include the formation of carrier grating at this point.

1 dPy
‘/act dt

dNy _ i I

—— —(A-Ny+ B-Ny>+C-Ny*) —
I o Viet ( 0+ o+ 0)

+FN(Zat)7

stim
(4.23)
The Eq. (4.22), can be often found in literature and is quite good at
describing the forces that drive the rate equations of a typical semicon-
ductor laser, as well as for the estimation of basic device characteristics.

2www.photond.com
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The problem here is that we do not know beforehand the value of the
material gain at the lasing frequency, gmq (N, A), as it is also not pos-
sible to determine the lasing wavelength, A, before having an actual
time sample of the output electric field. To this end we resort to tried
solution, Eq. (4.23), which has been realized in a commercial travel-
ing wave laser simulator [14]. The difference between the Eq. (4.22)
and Eq. (4.23), which we actually implement numerically, is the de-
scription of the stimulated emission contribution to carrier population.
In Eq. (4.23), the rate of stimulated emission dPy/dt, can be simply
determined from the net photon flux through a discretization element
during the simulation.

By using the free carrier rate equation, Eq. (4.22), to describe
the evolution of carrier density along laser axis, we stay consistent
with the quantum dot gain model Ch. 2. However, to describe the
carrier dynamics within quantum dots a multi-population carrier rate
equation model can be considered more appropriate [44,45]:

dNps L 1 | 1
= + Nespes—gg — Nespas—gg — Nes(1 — pes) =g
TR gy~ Neseasrgg ~ Nesll = peslogs
1
- NEST —vl'gps P
dNgs 1 1 1
o = Nespas—ag — Nospes—gg — Nas(1 — pas) —zg — vl'gasP
t TES TGS Tsp
P P . Nas . Ngs
% - UgFgGSP + UgFgESP - a + /Bsp TSCI';S - ﬁb‘p TSES

(4.24)
The coupled multi-population Eqs. (4.24) describe the evolution of
carrier and photon density in a two-level quantum dot system, al-
though an additional carrier population can be added for quantum dot
wetting layer, this approach already requires knowledge of numerous
parameters that are often not easy to estimate accurately. The param-
eters characteristic of Eqs. (4.24) are: pgg(s), probability of finding a

free state at elevated (ground state) energy, Tg§<(g§)>, transition times

from elevated state to ground state and vice versa and gpggs), the
material gain for carriers in elevated and ground states respectively.
The advantage of multi-population equations in our case would be
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the self-consistent inclusion of different energy levels, which can be
advantageous for the application of implemented linewidth enhance-
ment factor model at higher injection currents Ch. 2 [34]. However,
due to the numerous parameters required by the multi-population rate
equation model we rely on the ABC recombination approach for the
modeling of carrier evolution, Eq. (4.23).

Additionally the spectral analysis of time evolved laser output and
small-signal analysis can enable further insight into characteristics of
specific laser design, through side-mode suppression ratio, spectral line-
width, amplitude modulation (AM) and frequency modulation (FM)
responses as well as the characteristics of noise spectra. The most
common approach to determine the AM and FM responses relies on
linearization of hyperbolic partial differential equations that describe
the advection of the electric field envelope. This is well documented in
series of publication regarding the CLADISS simulation software [46],
as well as the matrix based estimation of the spectral linewidth, appli-
cable to both broad and narrow spectral linewidth. Another possibil-
ity for estimation of the spectral linewidth and the RIN and FM-Noise
spectra that is actually implemented in the simulator discussed in this
thesis, is a small-signal model based on Green’s function solution [38].
The main advantage of this model is efficiency, as it is not necessary
to evolve the laser problem in time with linearized equations just for
the modulation responses. The model solves instead a system of 4
equations derived from small-signal analysis, directly from the carrier
density and electrical field profiles retrieved from the traveling wave
model.

4.2.3 Formation of the Carrier Grating Pattern

In the case of narrow-bandwith counterpropagating waves, the forma-
tion of standing wave pattern that occurs as a superposition of the
forward and reverse propagating components of the resonating field,
can lead to the formation of the carrier grating pattern along the laser
cavity. As we are concerned mostly with single-mode lasers, it is ap-
propriate to consider its effects on the linewidth and mode stability.
The mechanism that is most relevant for spectral linewidth, is the ef-
fect of such half-wavelength carrier density fluctuation on modal gain
profile, leading to modal selectivity through gain variation at the same
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Figure 4.6: Calculated carrier grating component of a 2QD-layer single-mode DFB
laser.

spatial frequency. The resulting gain saturation occurs predominantly
at anti-nodes of the resulting field intensity pattern, and is correlated
with the main lasing mode. As a consequence, such a scenario can
only further decrease the stability of the lasing mode at higher output
powers, where the effects of self-heating and overall carrier depletion
are also prominent.

dN. : . * *
i =~ (By/(No) + 4D0y5s”) Nop — is(Pp R = F Py

dNyp , (4.25)
dt = _(Rsp/(NU) + 4D(1,pﬂ(] )NQR - iS(PR Fr— RPF*)

To model such an effect numerically we resort to approach imple-
mented in the FreeTWM software [47]. The effect can be optionally
included in the laser simulation, in which case two additional rate equa-
tions have to be integrated in time, Eqs. (4.25), resulting in spatial
profiles of forward, Nop, and reverse, Nag, components forming the
carrier grating pattern. The total carrier density, N(z,t), is then also
modified accordingly, comprising in this case both the carrier density
calculated initially, No(z,t), using the Eq. (4.23), as well as the carrier
grating pattern:
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N(z,t) = No(z,1) + R [Nap(z,t) €25 + Nop(z,t) e %] (4.26)

The additional parameters that we introduce this way are: derivative
of spontaneous emission rate, Ry, (Ng) = dRs,/dNy, ambipolar diffu-
sion coeflicient, D,,, wave vector at reference wavelength, 3y, scaling
factor, s, and polarization components Pr . The polarization compo-
nents are scaled, where relations, —I[Pp/F| and R [Pp/F], yield modal
gain and detuning factors. The same relations can be also written for
counterpropagating wave, I.

As we are generally interested in the single-mode laser operation,
it is not necessary to consider the broadband polarization components,
Pr . For simplicity we therefore adopt the linear approximation for
polarization, having an amplitude determined by the spatially varying
gain value at the lasing frequency. An example of the calculated carrier
grating component of the carrier density profile, Fig. (4.6), shows a rel-
atively low contribution to overall carrier density, i.e. one to two orders
of magnitude lower than a typical mean carrier density. The spatial
frequency of such a carrier grating pattern is determined by the wave
vector, 3y, at the reference wavelength of the SVEA approximation.

4.3 Modeling of Photon and Carrier Noise

The photon and carrier noise sources in traveling wave equations are in-
cluded to model the microscopic degrees of freedom which are neglected
under the continuum approach of material properties description. This
way it is possible to combine the benefits of both the continuum model
and statistical nature of noise sources that predominantly determines
the spectral linewidth that we are interested in. Here we briefly sum-
marize the the theory behind the noise models and numerical imple-
mentation of the algorithms used to include the noise in traveling wave
laser model.

4.3.1 Langevin dynamics

The differential equations describing the traveling wave model, Eqs.
(4.20,4.21,4.22), are essentially stochastic differential equations based
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on the Langevin dynamics with driving terms denoted as: Fg and Fly,
corresponding to spontaneous emission noise and carrier noise sources
respectively. By assuming the particle nature for both the photons and
electrons, the noise in both cases can be described as shot noise. As a
consequence, the spectral densities can be shown to be constant and
proportional to the average rate of particle flow through the photon or
carrier populations:

(FF) =) Rl +) R,
(FiF}) = _[ZRM +ZRJ¢]=

where R and R; represent the rates of flow in and out of the popula-
tion ¢, and [2;; the rate between the population 7 and j. By considering
all the sinks and sources for the photon and carrier populations, one
can derive the correlation strengths for the noise [7]:

(4.27)

(FpFp) = 2'R'y,N,,,
(FNEx) = 2R ,N, /T — v,gN,/Ve + 0i(Linj + Ip) /qVi2,  (4.28)
(FpFy) = —2R';,N), + v,gN,/ V.

The Langevin noise being defined in this sense, is a stationary process
where the correlation strengths, following from the Wiener-Khinchin
theorem, correspond to noise spectral density. The carrier noise can
be then directly plugged into the carrier rate equation, Eq. (4.22). In
the case of photon noise however, the photon noise correlation strength
has to be related to the traveling wave Eqgs. (4.20,4.21), representing
the resonating laser field. This problem is also somewhat simplified by
assuming that the resonating field is confined within the fundamental
TE19 mode. The transmitted power, Pr, and total energy density per
unit length, W', of a TE;; mode are calculated as:

1 2
Ey|?ab, 4.29
477T | 0| ( )

Pr=

! ’ ’ 1
W =Ww,+W, = Ze|E0|2ab. (4.30)
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The nrp and €, represent the wave impedance and permittivity, w,
and W,,’, the energy densities of electric and magnetic field per unit
length, and a and b, the effective width and height of the waveguide.
The energy density can be now directly related to photon correlation
strength and used with traveling wave equations, Egs. (4.20, 4.21). To
numerically generate the complex vector of the spontanecous emission
noise, Fy, and real-valued carrier noise, Fy, we use the Box-Muller
transform which transforms the uniformly distributed random number
to a pair of independent normally distributed random number [48].
This approach is particularly convenient as the spontaneous emission
noise is described in complex vector space, and concerning the real-
ization as a C++ algorithm, it also does not require any proprietary
library. As an output of the traveling wave simulation we get the elec-
tric field strength, Ej, as profiles along the axis of the photonic device.
However, to characterize a laser device the Light-Current (LI) curve is
often used as a figure of merit, often measured in mW output power,
here the Eq. (4.29), can be also useful to make more practical sense of
the traveling wave model results.

4.3.2 Inclusion of Colored Carrier Noise

The colored noise occurs naturally in many physical and biological
systems and semiconductor lasers are no exception. In semiconductor
lasers the colored noise component of the carrier noise is often de-
scribed as 1/ f noise, also known as pink noise. On the other hand, the
reality can be often more complex where the contribution of other col-
ored noise types can be noticed in the measurements of the frequency
noise spectra as well [49,50]. The occurrence of colored noise in semi-
conductors is not only determined by the device design but also by
the power source as well, which is not very surprising, as it essentially
acts as an interface of the laser diode system and introduces the fluc-
tuations in carrier population originating outside of the isolated laser
diode system.

In modern optical communication systems we are often interested
in high bit rates, where the contribution of the technical 1/f noise to
phase error variance is not dominant [49]. Therefore, the experimental
results often focus on the intrinsic linewidth generated by the Gaussian
noise sources. The two experimental approaches commonly used in
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Figure 4.7: Time sample of generated 1/f noise with time step of 1 s.

practice to extract the spectral linewidth, either from beat note signal
or from frequency noise spectra, usually try to neglect the effect of col-
ored noise. Due to the presence of various noise sources with different
spectral characteristics on the other hand, makes the isolation of the
Gaussian noise contribution less than a straightforward task [49,50].

The reason for including the colored noise sources in the laser
model, Fig. (4.7), is mainly for studying its effect on the mode sta-
bility and potential deterioration of the intrinsic spectral linewidth
through degraded mode stability or emergence of longitudinal side
modes. There are both experimental and theoretical studies related
to colored noise and mode instability in laser diodes [33,51]. The ex-
perimental results show that the origin of linewidth floor may well lie
in the presence of technical colored noise, while the theoretical study
in [51], shows that the axial photon fluctuations can lead to linewidth
rebroadening that is also commonly observed in experimental measure-
ments of the linewidth.

Given the nature of the 1/f noise, i.e. the correlation of the noise
samples along the laser diode, we can study its impact on mode stabil-
ity through correlated change in the refractive index or direct coupling
of the correlated carrier noise to resonant field and investigate whether
the colored technical noise can result in the axial photon fluctuation
and mode instability that have been studied previously in theory [51].
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Figure 4.8: Power spectrum of generated 1/f noise with time step of 1 s.
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The colored carrier noise can be optionally included as an addition to
Gaussian noise by defining the factor £, in the carrier rate equation Eq.
(4.31). The colored noise relies on the frequency domain, multiplica-
tion method (FIR technique), the code used to generate the colored
noise is given in [52], that is not strictly limited to 1/f pink noise, Fig.
(4.8) . It is generally able to simulate any noise with spectral charac-
teristic of the form 1/f®. By default, the carrier noise is assumed as
Gaussian in the carrier noise while the colored noise is calculated only
optionally as the colored noise generation at each spatial discretization
can be time-consuming even though it is coded in C++. Colored noise
is generated before the actual laser simulation, in a spatio-temporal
matrix, covering complete spatial and temporal samples. To reduce
the simulation time in case of the sweeping current simulations, the
colored noise matrix is simply reused for all the injection current vari-
ations for which the sweeping simulation is executed.
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4.4 Spatiotemporal Discretization

To adapt the traveling wave model to numerical computation the dis-
cretization of the computation domain is necessary. As we are dealing
with time-domain model described by hyperbolic differential equations,
Eqgs. (4.20,4.21), to ensure the stability of the numerical algorithm we
resort to Courant—Friedrichs—Lewy (CFL) condition, v, = Az/At,
relating the spatial, Az, and time step, At, over the group velocity, v,.
For convenience we initially define the time step, At, as the sampling
theorem limits the spectral sample that we can cover with a given time
step. For a time step, At, the spectral sample of laser output would
be limited by the Nyquist frequency:

—fn <[ <[n, (4.32)
where the Nyquist frequency, fn, is directly related to the time step,
v = ﬁ. As a consequence of the predetermined time step, the

spatial step subsequently follows from the CFL condition. One easing
fact is that in the case of Bragg grating sections the coupling coefficient
is considered uniform for a considered device section, which makes
it unnecessary to discretize the device on the scale of Bragg grating
geometry.

CFL condition
Vy=Az/At

g %

X

Figure 4.9: Illustration of spatial discretization of a laser diode with Courant-
Friedrichs-Lewy (CFL) condition which determines the step size along along z and ¢
axes.

For this reason the CFL condition is the sole governing factor when
it comes to discretization, Fig.(4.9), while precaution should be taken
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only in the case of multi-section devices with varying effective refractive
index. The varying effective index consequently leads to varying spatial
step size from section to section in order to maintain the CFL criterion.

lCurrent injection

DFB grating —
Active region —>
Az
RUFL  Rr|Fr

At
t

Lz RUIF1 RrlFr
z Z+Az

Figure 4.10: Discretization element of a laser section with illustrated evolution
of the forward, F', and reverse, R, propagating electric field over a single time step
along z and t axes.

As a consequence of such discretization, each section of the sim-
ulated photonic integrated circuit (PIC) is divided into elements of
uniform length, Fig. (4.10). Numerically these clements are realized
as structured data elements, each containing the forward and reverse
traveling wave at its left and right end as well as the carrier density
that is considered uniform across an individual element. Aside from
the time-dependent variables each element also contains all the rele-
vant parameters necessary to evolve all the time-dependent variables
in time, which includes the geometry, material related parameters and
injection current. This way it is quite easy to vary all the parameters
from section to section, like current injection or modulation, coupling
coefficient or parameters of the material gain model.

Numerically, a single pass from first to last discretization element,
i.e. update of the time dependent variables over a single time step,
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At, corresponds to one round trip of the internal electrical field of
the simulated PIC device. The forward and reverse propagating field
envelopes, F}, and R;,, are propagated across an element by being
passed through a digital filter whose parameters are set to emulate the
gain characteristics of the active region.

4.5 Numerical Material Gain Models

The traveling wave laser model in it’s basic form, Eqgs. (4.20,4.21),
does not offer the possibility of modal gain dispersion. In other words,
all the cavity modes are treated with uniform gain dispersion function
in frequency domain. To complement the classical advection equations
we resort to the theory of infinite impulse response (ITR) digital filters
to emulate the gain and refractive index dispersion of the active region
of the simulated photonic device. The QD-wave simulation model in-
cludes two options to realize this, single pseudo-Lorentzian gain model
that is classically employed [14,35], and a multi-Lorentzian gain model
which seeks to fit the precalculated gain dispersions, Ch. 2, on a finite
wavelength range by using a set of superimposed pseudo-Lorentzian
filters. The gain filters are implemented in time domain in the form of
linear constant-coefficient difference equation, which essentially repre-
sents the Fourier transform of the desired gain filter transfer function
in frequency domain, H(w).

4.5.1 Single-Lorentzian Gain Model

When we think of semiconductor material gain, the Lorentzian gain
dispersion is certainly not the first option that comes to mind. For
description of gain dispersion of bulk or quantum well or dot based
devices, the Gaussian gain dispersion often offers a better fit. How-
ever, considering that our time-domain PIC device simulation model
is CPU intensive, among our top priorities is also a simplicity of imple-
mentation of gain dispersion in time domain. The pseudo-Lorentzian
gain dispersion implemented as digital IR filter leads to a fairly sim-
ple time-stepping equations, Eqs.(4.33,4.34), for forward, F(z+ Az, t),
and reverse, R(z,t), propagating filed, where we use the notation from
Fig. (4.10), for the reference:
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F(z+ Az t) = mp(moF(z,t — At) + mpF(z,t — 2At))
+ mia(meR(2,t — At) + myR(z,t — 2At)) (4.33)
—m.F(z+ Azt — At),

R(z,t) = ma(moF(z + Az, t — At) + myF(z + Az, t — 2At))
+ maa(myR(z + Az, t — At) + myR(z + Az, t — 2At)) (4.34)
—m.R(z,t — At).

This simple model requires only a memory of two last time steps for
the whole mesh, which reduces the memory requirements. The gain
filter in this case is described fully with its three coefficients:

me=14+K+05-gp-Az)/(1+ K —0.5- gy - Az),
my=e?(1—K+05-gy-A2)/(1+ K —05-g-Az), (4.35)
me=e"(1—K—05-gp-A2)/(1+K —05-gy-Az).

The coefficients K, gy and 6 respectively define the FWHM of the
gain curve, peak gain depending on the carrier density and detuning
of the gain peak from the reference frequency of the traveling wave
model. In the case of devices with distributed feedback, like DFB or
DBR lasers we also need to define the m; ; matrix coeflicients defining
the distributed feedback grating:

M, =" (4.36)
moy oo

related to the coupling coefficients kppr and kppg as:
mi = /1 — |miaf?,
mig = ikprAz,

Mgy = ikppAz, (4.37)

Moo — \/ 1— |m21|2.
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The gain peak g,, depending on carrier density /N, which varies both
spatially and temporally for given spatial element, Fig. (4.10), is sim-
ply defined as:

_ dg/aN(N — N,
gpk - 1 + P )

where Ny and P are transparency carrier density and photon den-
sity, respectively. The denominator is acting as a model for gain sup-
pression, where € is a nonlinear gain saturation coefficient. The main
advantage of the single-Lorentzian gain model is its simplicity, which
allows for great reduction of simulation time as the gain parameters
are updated not only at each time step but also for each discretization
element. The cost of simplicity is paid mainly in terms of inaccurate
gain dispersion and gain peak calculation, Eq. (4.38), which does not
include the saturation of the differential gain, dg/dN, at higher carrier
densities which naturally occurs for all active materials. Nevertheless,
this simple gain model can be used with any device supported by the
simulator: Fabry-Pérot laser, DFB/DBR laser, SOA or integrated de-
vices. The best results can be expected for applications where the
accurate description of gain dispersion is not critical, like in the case
of DFB or DBR lasers where the lasing mode is often near the gain
peak.

Within the single-Lorentzian gain model, we also add an optional
inclusion of the Lorentzian or frequency invariant absorption for mod-
eling the interaction of the resonating field with external absorption
sources. Such a model could be used to describe the presence of lig-
uid or gases with absorption lines near the lasing frequency, acting
on the internal resonating field of the device [53]. The absorption in
such a modified gain model is implemented as carrier density invariant,
i.e. acting with a fixed preset absorption peak as a substitute for the
Eq. (4.38).

(4.38)

4.5.2 Multi-Lorentzian Gain Model

To essentially make use of the precalculated gain and refractive index
dispersions Ch. 3, a more complex digital filter is necessary to replicate
the quantum dot material properties using the traveling wave model.
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To model only the saturation of the differential gain at higher car-
rier densities, it is enough to use the single-Lorentzian filter centered
around quantum dot ground state, while replacing the equation for
gain peak, Eq. (4.38), with extracted gain model data.

I IIR - filter I
IIR - filter
IIR - filter

<~——7-element——

Figure 4.11: Tllustration of multi-Lorentzian gain filter on a single discretization
element with parallel arrangement of digital IR filters.

However, to implement accurately the dispersions of both gain and
refractive index on a broader frequency range, we implement a multi-
Lorentzian gain filter as an additional gain modeling option. The
Lorentzian IIR filters are superimposed to fit the calculated disper-
sions on a broader wavelength range [31,45], where the full width at
half maximum (FWHM) of individual Lorentzian filters is naturally
significantly smaller than for the case of single-Lorentzian gain model
where it fits the whole considered wavelength span of the gain spec-
trum.

The gain dispersion calculation described in Ch. 3, includes the
gain contribution of the ground state and two elevated carrier tran-
sitions. However, it is not always necessary for the gain model to
replicate the whole calculated gain dispersion. This particularly holds
for the narrow-band designs investigated in this thesis, where the side-
modes are suppressed by the DFB/DBR gratings. In this case the gain
properties around the Bragg wavelength are the most relevant. Before
the actual time-domain simulation the calculation of the gain and re-
fractive index dispersion is performed for multitude of injection cur-
rents in the software module solving the quantum dot heterostructure
problem, producing eventually the gain dispersion curves for different
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Figure 4.12: Calculated gain dispersion of a 2QD-layer epitaxy and multi-
Lorentzian gain model comprising 29 parallel Lorentzian filters fitted for various
injection rates.

carrier densities ranging from sub-transparency to maximal gain val-
ues. From the calculated gain dispersion Fig. (4.12), it can be seen
that the ground state and the first elevated state transitions contribute
the most to lasing. The 29 parallel Lorentzian are shown to be suffi-
cient to adequately replicate the dispersion of the first two transitions,
Fig. (4.12).

During the simulation, with each time step and for each discretiza-
tion element the carrier density is updated according to carrier rate
equation, Eq. (4.23). At each of these instances, using the interpo-
lation of dispersion curves, the material gain is updated accordingly.
Naturally, due to the dispersion of individual Lorentzian gain filters,
Fig. (4.11), that build up the multi-Lorentzian gain model all have dif-
ferent parameters for the gain and detuning factor. However, to obtain
a satisfactory fit of the material gain filter, when determining the pa-
rameters of the individual filters we need to factor in the contribution
of the neighbouring filters, as the final numerical dispersion is obtained
by their superposition. The filter parameters are determined through
an iterative algorithm for each of the considered injection rates, as
the contribution of the neighbouring filters varies depending on the
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change in the dispersion with injection rate. The numerical equations
of individual Lorentzian filters are essentially the same as for single-
Lorentzian gain model, Eqs. (4.33,4.34), with individual filters being
now placed uniformly on the wavelength span of gain dispersion that
we want to fit.

4.6 Treatment of Interfaces

In a case of multi-section device it is possible that the individual sec-
tions are either processed differently or are grown in sequential depo-
sition steps, resulting in discontinuities of the effective refractive index
along the device. To adequately model these differences, we need to
take into account the field reflections that occur at interfaces between
the sections.

FB(t) =1ty FA(t) +rp- RB(t) + YA(t),
(4.39)
Ra(t) =14 Fa(t) +tp - Rp(t) + Yp(t)
Following the simplified fundamental mode description of resonance
in transversal plane, consequently the interfaces between the section

are also treated in a simplified manner, considering only the reflection
and transmission coefficients for the fundamental TE;y mode.

tA
P T——

E

G
tB

-—

A B

Figure 4.13: Ilustration of reflection and transmission at the interface between
sections A and B with corresponding field coefficients.

Using the Fresnel field equations describing a simple dielectric inter-
face one can derive the equations for forward and reverse propagating
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field envelopes, Eqs. (4.39). The r4/5 and t,/p are field reflection
and transmission coefficients, respectively, looking from A or B side
of the interface, Fig. (4.13). The possibility of field injection is also
included in the model through factors Y4 and Yjp, for the simulation
of devices with external field input, such as semiconductor optical am-
plifiers (SOA). The field injection is generally considered to be zero
between the sections, while it can be optionally defined only at the
facets of the device. The inclusion of phase shifts along the cavity is
treated in a similar manner, the phase shift can be added to facets to
emulate the irregularly cleaved DFB gratings while it is neglected at
the interfaces between the sections. The phase shifts along the DFB
sections which can be found in many commercial designs, can be also
added to further control the output spectrum.

4.7 Small-Signal Analysis

The traveling wave model itself allows us already to extract many of
the critical properties of laser performance like: Ll-curve, side-mode
suppression ratio and even the spectral linewidth. However, we will
show that the direct extraction of the spectral linewidth from the sim-
ulated time trace of the field at the device facets also has its limita-
tion. Consequently, we will give here a more detailed motivation for
the small-signal laser model implemented in the QD-wave simulator.
Moreover, the model equations will be discussed as well, together with
the approach to numerical implementation.

4.7.1 Small-Signal Model Motivation

Even though the direct extraction of linewidth from the traveling wave
simulation is possible with the help of fast Fourier transform (FFT),
in order to extract the spectral linewidth necessary for modern optical
signal modulations [4], of below 1 MHz the simulation time would
be simply impractical. To demonstrate this we can start from the
simulation time step of At = 1.5-107'* s, which is necessary in order
to cover the ground state and the first elevated state of the quantum
dot gain dispersion as in Fig. (4.12), by the fitted numerical gain
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model. This equates to the sampling frequency of f; = 66.66THz, and
in order to extract the linewidth of 100 kHz we would require at least:

fs
2100 kHz

frequency bins of the Fourier transform to reach the sufficient frequency
resolution. Meaning that we would need at least:

Niins = =333.3- 10", (4.40)

Nmmplﬁ =2 Nbins = 666.6 - 106, (441)

time samples/steps to extract the linewidth of 100 kHz, which would
result in days of simulation time, just to calculate the linewidth for
a single injection current. Instead of this we resort to an alternative
approach for the calculation of spectral linewidth, which only requires
the traveling wave simulation to reach a steady state. The model that
we implement relies on the spatially resolved small-signal theory [37],
developed initially to address the narrow spectral linewidth lasers as
well the complex effects arising from the spatial variation of model
parameters, which is a clear advantage compared to classical Schawlow-
Townes linewidth equation.

4.7.2 Small-Signal Equations and Numerical
Modeling Approach

The small-signal model is directly dependent on the output results
of the traveling wave simulation, where the longitudinal profiles of
the model variables and parameters are taken as input. In short, the
derivation of small-signal equations is based on separation of the trav-
eling wave field envelopes, F' and R, as in Egs. (4.20, 4.21), into their
amplitude and phase components:

F = |F| €, (4.42)

R =|R|-e/%", (4.43)

This allows one to derive small-signal equations by substituting the
small-signal deviations of the field amplitude, phase and carrier density
into the equations describing the traveling wave model Eqgs. (4.20, 4.21,
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4.23). If we denote the traveling wave envelopes, Eqs. (4.42,4.43), as

e . . .
u®™ = a* - e/ and by assuming a purely real coupling coefficient &,

the small-signal equations can be expressed as:

19 (da* . , o (da* .,
v, 0t (czsjt+]6¢ ) ——]5k:F& <a5i +joo )

sa*  dat F,*
.+ . . + ¥ sp
+ jKv <—a3i e + (0™ — ¢ )> + o
(4.44)
0 ON OR Loat _da~

where v = %% . (u¥ Ju, ), P, = P," + P,” the steady-state photon
density, u,* = a,* - 1%~ the steady state envelope solution, ¢, the
phase shift of the grating, and k the complex wavenumber including
the internal losses and detuning factor. Upon Laplace transform of the
small-signal equations, the problem can be reduced to a simple matrix
expression, cf. [37,38]:

(M0+M1%> :1?=5J~h]v+f$p, (446)
where My (s, z) and M(z) are 4 x 4 matrices, hy(s, z) and f,, are 4-
dimensional vector functions, and ¢.J is a scalar. The hy(s, z) vector
describes variation of gain and refractive index with carrier density and
vector fy, the Langevin noise terms. The relative amplitude and phase
fluctuations are contained in vector & = [6a* /a,™, 66T, da™ Jay~, 667",
while 0.J is the local change in carrier injection rate. The problem
variables in Eq. (4.46), in general depend on s = iw, where w is the
baseband frequency. Adhering to boundary conditions at facets the
Eq. (4.46), can be solved using the Green’s function method but for
simplicity we follow the methodology in [38], and rely on the Green’s
function solutions, {;(s, 2/, z), i = 1, ..., 4, of the operator that is adjoint
operator over vector @, Eq. (4.46). The problem is thus reduced to
solution of:
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(MOT(S, 2 — Mﬂ(z’)(i) Ci(s, 2, 2) = eid(2 — 2), (4.47)

where (x(s, z)); can be expressed in terms of {;(s, z) as:

L
(z(s,2)) :/0 ¢il(s, 2, 2){0J (s, 2 Y hn(s, ') + fop(s,2')}d2!, (4.48)

where L is the length of the laser cavity. The small-signal problem
given in matrix form Eq. (4.47), is essentially a system of four or-
dinary differential equations (ODEs) that can be solved numerically
using some of the standard ODE solver libraries. The small-signal
module was initially developed in MATLARB, as it allows for great flex-
ibility in terms of the available numerical ODE solvers. However, to
seamlessly integrate the small-signal postprocessing with the traveling
wave module Sec. 4.2, it was subsequently also realized in C++, where
the matrix operations and numerical solving of ODEs are performed
with the help of readily available libraries [54, 55].

The main physical properties that we are interested in: spectral
linewidth, RIN and FM-noise spectra, can be directly extracted from
the solutions of ODE system, (;(s, z). The spectral linewidth is deter-
mined in low-frequency limit of the FM-noise spectra, F'Mpec.:

LT
2D d
Ay — QLHI% FMpeet. (5) = Qifo Ct; (2) Co(z)227
s—
T T (6" @0dz)

where the main difference in our approach is inclusion of the injection
rate dependent linewidth enhancement factor [34], which is expected
to have a noticeable effect on spectral linewidth at higher injection cur-
rents. Other physical effects related to spectral linewidth that we addi-
tionally consider in this work, formation of carrier grating and colored
carrier noise [47,52], can be optionally factored in spectral linewidth
through solutions of the traveling wave simulation. It should be noted
that the noise sources, Fy, and Fy, are treated as classical Langevin

(4.49)
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Figure 4.14: An example of calculated evolution of the RIN and FM-noise spectra
with injection current for a 3-QW DFB laser with \/4 phase shift.

functions in noise analysis module, meaning that the main contribu-
tion of colored noise to calculated spectral linewidth or noise spectra
are the spatially correlated fluctuations of traveling wave variables.

L
RINgpeet (5) = 4|(2(s,0))1)%,, = 4 /O ¢l (s,2)2D ¢1(s, 2)dz  (4.50)

L
FMpect(s) = |s*|(2(s,0))2f,, = |S|2/0 G2 (s,2) 2D Co(s, 2)d=

(4.51)

Aside from calculation of spectral linewidth, the other properties
resulting from small-signal laser model that are also important for the
laser diode characterization, are relative intensity noise (RIN) spectra
and FM-noise spectra, Fig.(4.14). The noise properties can be similarly
expressed as functions of vectors (;(s, z), ¢i(s, 2) in the case of RIN
spectra, Eq. (4.50), and (s(s, z) in the case of FM noise spectra, Eq.
(4.51). Even though the main focus of practical simulation examples in
Ch. 5 is on the problems of spectral linewidth in quantum dot lasers,
the model can be readily used to simulate directly modulated laser
diodes or other problems where the RIN or FM-spectra are relevant.
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Chapter 5

Simulation Examples
and Benchmarks

As a practical part of this thesis, this chapter is completely focused
on commercially interesting photonic devices. The main interest of
the presented study, revolves around single mode laser operation and
a narrow spectral linewidth for which the designs are optimized. We
begin with a study of basic optical communication elements, a DFB
based laser diodes, which we further investigate within a more complex
integrated device comprising a laser array. The results for the DFB
lasers and the laser array are compared to performance of realized
devices, while we conclude the simulation examples with a study of
quantum dot lasers based on the high quality factor cavity design [50].

5.1 Quantum Dot Distributed
Feedback Laser

Historically, the distributed feedback (DFB) lasers predate the dis-
tributed Bragg reflector (DBR) lasers and even today play an impor-
tant role in modern optical communication systems. The simplicity of
production is the key property that enables DFB lasers a vast presence
in commercial communication solutions. In their simplest form it is
even possible to fabricate them in a single epitaxial growth. Intrinsi-
cally, the DFB laser is a dual-mode device with resonant modes around
the Bragg frequency, while the Bragg frequency itself is antiresonant.

81
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Nevertheless, the single-mode operation that is of most interest in op-
tical communications can be easily achieved by adding a phase shift
somewhere along the laser cavity.

5.1.1 Design Principles

The approach to design of DFB lasers essentially depends on their
particular application. With focus of our study being the externally
modulated single-mode lasers, the key characteristics that we seek to
optimize are narrow spectral linewidth and tunability of the lasing sig-
nal. When it comes to the choice of number of active quantum dot
layers, it is essential to remember that this directly relates to peak
modal gain. As a result of high peak gain, the laser will reach thresh-
old for lower carrier densities which reduces the spontaneous emission
noise, and will have a higher operating differential gain. Another ben-
efit of the high modal gain is the fact that the threshold is reached
for the lower saturation of the quantum dot ground state, resulting in
more symmetric gain dispersion around the lasing frequency and thus
lower linewidth enhancement factor which contributes quadratically to
spectral linewidth. The laser model studied here does not support the
effects of self-heating but nevertheless the effect of varying maximal
modal gain can be thoroughly examined. To this end we will compare
the DFB laser based on 2QD- and 5QD-layer epitaxy, and summarize
the pros and cons of both designs.

A special attention should be also paid to the choice and design
of the distributed feedback grating. The lateral surface grating de-
sign, [43], featured in all the laser designs that we will use to benchmark
the simulation models, does offer great simplicity in terms of produc-
tion but their placement on the side of the ridge waveguide where field
intensity is weaker inevitably leads to reduced coupling coefficient. In
the following examples it is shown however, that the simplicity of grat-
ing realization can be clearly utilized despite the minor drawbacks of
the surface grating design.

5.1.2 Lateral Grating Design

Whether in DFB or DBR laser diodes, to tailor the laser output spec-
tra in many commercial applications the Bragg grating is realized in
buried grating technology. This approach can be justified by better
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control of the grating properties and high yield of produced devices.
However, the buried grating design inevitably entails a two-step epi-
taxial growth which increases the cost and production time. As an
alternative approach, in most of the simulation examples considered
here, we study the practicality of the lateral grating design. The main
advantage of the lateral grating approach is the simplified production
procedure, allowing one to essentially produce a functional DFB laser
within one epitaxial growth step.

lateral grating

o N

Coupling coefficient [1/cm]
=)

2 , 4 % 0.2 04 0.6 0.8 1
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Figure 5.1: Fundamental TE mode  Figure 5.2: Calculated coupling coeffi-

with marked location of the lateral dis-  cient of a lateral DFB grating vs. filling

tributed feedback (DFB) grating. factor of the lateral grating.

The refractive indices of materials used in the lateral grating design
are often quite different compared to the modal effective refractive in-
dex. This originates from the unique processing of the lateral grating,
where after the initial etching of the ridge waveguide, the sides of the
ridge are selectively etched to define the lateral grating. To accomplish
this a grating layer needs to be added on top of the otherwise Fabry-
Pérot epitaxy, Fig. (5.1), as for the epitaxy depicted in Fig. (4.5).
The periodic voids that result from the etching are then either sim-
ply filled with air or in case of device planarization, with planarizing
materials that often have significantly lower refractive index than the
semiconductor materials used in the epitaxial growth. In either case,
the effective index of the lateral grating is often much lower than the
modal effective index, n.s, which in our case makes originally derived
equation for the coupling coefficient, Eq.(4.15), more appropriate.
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Figure 5.3: Calculated confinement factor and the maximum coupling coefficient
for a 5QD-layer epitaxy with varying width of the lateral grating.

Naturally, some concerns can be raised regarding the remote loca-
tion of the lateral grating with respect to the transversal mode profile.
This can be a disadvantage of course, Fig. (5.1), as the confinement
factor of the grating plays a major role in determining the practical-
ity of the grating design. Fortunately, the great difference between
the refractive indices of the materials comprising the grating is able
to compensate for the intrinsically low confinement factor. The esti-
mated coupling coefficient of the 2 wm wide lateral grating design on
each side of the ridge, Fig. (5.2), is shown to be comparable to that
of standard buried gratings. Aside from the materials used, there are
also a few more possibilities to further increase the coupling coefficient
of the lateral grating.

Ridge width [um] Conf. factor Effective index Coupling coeff. [cm™!]

1.75 1.572-1073 3.22465 21.50
2.00 1.265- 1073 3.22543 17.30
2.50 0.975-1073 3.22647 13.33

Table 5.1: Dependence of the lateral grating properties on the ridge width of a
2 pm wide grating on each side of the ridge.

In case of the fixed ridge width of 2 pum, it is possible to increase
the width of the grating design in order to increase the confinement
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factor. However, this approach is limited by the mode profile and as
shown in Fig. (5.3), the confinement factor saturates at ~ 2 pm and
further increase of the grating width does not lead to a significant
increase of the coupling coefficient. Another possibility is to place
the lateral grating closer to the peak of transversal mode intensity by
reducing the ridge width. This is demonstrated in Table (5.1), where
the reduction of ridge width from 2.5 um to 1.75 pm is shown to lead
to increase of the coupling coefficient by 61%. In case that higher
coupling coefficient is necessary, further improvement is also possible
by careful engineering of the transversal mode profile or by increasing
the thickness of the grating layer, which would also result in higher
confinement factor.

5.1.3 Performance of the 2QD- and 5QD-layer
DFB Laser Design

To compare the performance of 2QD- and 5QD-layer designs, the de-
sign of the cavity is also kept simple just as for the DFB grating design.
We use a 1200 pm long cavity with a uniform surface DFB grating, for
which the record spectral linewidth of 110 kHz was measured for a de-
vice with only two active QD layers [56]. The ridge width of 1.75 pm is
chosen to ensure sufficient coupling coefficient as the confinement factor
of the grating is significantly affected by the ridge width, Table (5.1).

1 Current injection

phase shift = 60° phase shift = 0°

DFB grating —s

Active region —

1200 ym

Figure 5.4: [llustration of a laser cavity design used for the numerical modeling of
a QD-DFB laser.

To calibrate the simulation parameters we rely on the measurement
of the LI-curve as a basic figure of merit, Fig. (5.5), which is available
for the 2QD-layer design, while the parameter set for the 5QD-layer
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Parameter Value
Quantum dot density, Ny 3.25-10 ¢m—?
Effective active layer thickness, Zl.y¢ 1 nm
Electron effective mass (InAs), m, 0.023 - mg
Heavy-hole effective mass (InAs), mp, 0.3 -myg
Homogeneous broadening (electrons and holes) 15 meV
Inhomogeneous broadening 10 meV
Nonlinear gain saturation coefficient 3.4-10716 cm?
Injection efficiency, 7; 0.55
Shockley-Read-Hall recombination coefficient, A 5.5-107 s~
Radiative recombination coefficient, B 1.35- 1071 cm?/s
Auger recombination coefficient, C 0.7-10728 cm®/s
Effective refractive index, ngss 3.23
Confinement factor, I’ 0.009 (2QD)/0.0225 (5QD)
Coupling coefficient 9 cm™!
Internal losses 12 em™!

Table 5.2: Parameters for the dynamic simulation of QD-DFB lasers.

design is extrapolated by adapting the confinement factor which is ob-
tained from the FEM simulation of the fundamental transversal mode.
From Fig. (5.5), it can be seen that the parameter set, Table (5.2),
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Figure 5.5: Ll-curve of the 2QD- and  Figure 5.6: Simulated spectrum at the
5QD-DFB laser designs. left facet of 2QD-DFB laser design.
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provides a good fit in terms of the LI-curve of 2QD-layer DFB design.
The correct simulation of the threshold condition confirms the choice
of recombination parameters which were adopted from [57], as well as
the choice of internal losses and coupling coefficient. Moreover, the
simulated output spectrum at 210 mA, Fig. (5.6), of the 2QD-DFB
device confirms particularly the choice of the radiative recombination
coefficient, as the side mode suppression ratio (SMSR) is also in accor-
dance with the measurements. The internal losses are chosen slightly
higher than the value of 10 cm™!, that was obtained in the measure-
ments [28]. The coupling coefficient of 9 cm™!, is on the other hand
significantly lower compared to the values obtained numerically, Table
(5.1). The potential reasons for this can be the processing procedure
of the surface DFB grating and the photon scattering from the grating.
Namely, the geometry in the calculation of coupling coefficient is con-
sidered perfect while in reality the etching and planarization procedure
can introduce roughness of grating edges and nonuniform confinement
factor along the grating. Regarding the nonlinear gain saturation coef-

ficient, the value used in simulation, 3.4-107'% cm?, can be considered
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Figure 5.7: Simulation and measurement of the spectral linewidth for 2QD- and
5QD-DFB laser designs.
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typical for the quantum dot active material [58]. The chosen satura-
tion coefficient is significantly higher than for the bulk and quantum
well lasers but it can be considered an overestimation for the consid-
ered quantum dot epitaxy, as the numerical model does not include
the self-heating effects which are essentially factored in the saturation
coefficient in order to match the LI characteristic.
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Figure 5.8: Injection dependent LEF  Figure 5.9: Gain filter and calculated
factor of the QD-DFB designs. gain dispersion of the 5QD-DFB design.

Since the simulation is able to produce a realistic LI-curve, when
comparing the linewidth vs. the injection current of the 2QD-DFB
design the results are also satisfactory, Fig. (5.7). The linewidth min-
imum of 110 kHz is obtained in the simulation results as well, while
the rebroadening at higher injection currents is reproduced by the in-
clusion of the injection dependent linewidth enhancement factor [34].
Even though the performance of 2QD-DFB laser can be considered as
high-end if not a record for the class of DFB lasers, on the LI-curve and
linewidth, Figs. (5.5,5.7), we also give the extrapolated performance
of the 5QD-DFB design for the same laser geometry, which indicates
a superior performance. The improvements can be noticed on all ma-
jor aspects, the threshold is reduced by = 15 mA, the output power
is significantly higher, and most importantly the spectral linewidth is
reduced by a factor 2, reaching a minimum linewidth of 53 kHz.

As the geometry of 2QD- and 5QD-DFB design is taken the same,
the explanation for the superior performance mainly lies in the prop-
erties of the active region. Even though the quantum dot epitaxy is
the same in both cases, by simply increasing the number of active
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layers significant improvements can be made. The slope efficiency is
improved as a consequence of the higher differential gain. The maximal
modal gain is increased by more than double, Fig. (5.9), which in turn
allows for lower transparency and threshold carrier density, leading to
lower contribution of the spontaneous emission noise and thus lower
spectral linewidth. Moreover, the behavior of linewidth enhancement
factor above threshold should not be overlooked here as it contributes
quadratically to spectral linewidth. From Fig. (5.8) we can see that the
injection rate dependent linewidth enhancement factor is lower for the
5QD-DFB case, as the saturation of the active material is significantly
lower for the same threshold gain, thus making it more immune to
negative contribution of the wetting layer at higher injection currents,
Ch. 3.

5.1.4 Effect of Colored Noise and Carrier Grating
on Linewidth

When considering the effects of carrier grating and correlated/colored
noise on the spectral linewidth we have to bear in mind the constraints
of the framework of traveling wave model. For the implemented for-
mation of carrier grating, Ch. 4, the most relevant characteristic of
the model is the slowly varying envelope approximation.
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output power of 2QD-DFB design, 1/f  output power of 2QD-DFB design, car-
carrier noise effect. rier grating effect.
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In that sense the interaction of the fast varying component of the res-
onating field and the carrier grating component is omitted, but the
carrier grating still adds to the spatial whole burning which intrinsi-
cally can lead to mode hopping and deteriorate the spectral linewidth.
In a similar manner the inclusion of the colored 1/f noise is also par-
tially limited by the model, i.e. by the postprocessing module which
extracts the linewidth. Namely, in the postprocessing step the noise
sources are still considered Gaussian, meaning that the effect of colored
noise is also limited to the problem of mode stability as it introduces
longitudinal fluctuation to the carrier density through correlated noise
sources along the laser cavity.

The effect of colored noise and carrier grating is examined for
the 2QD-DFB design, Figs. (5.11,5.10). The carrier grating pattern,
Eq. (4.25), is characterized by the ambipolar diffusion coefficient [47],
D,y =12 cm2s7!, while for the 1/f carrier noise we consider the ex-
treme case, where the carrier noise generation is completely substituted
with the correlated noise process of the same strength, i.e. £ = 11in Eq.
(4.31). The calculated amplitude of the carrier grating pattern is two
orders of magnitude lower than the threshold carrier density, and from
the Fig. (5.11) it can be seen that there is no significant contribution
to the linewidth while the lasing mode remains stable even at higher
output powers. For the case of 1/f noise, the conclusion is the same,
the lasing mode remains stable with no additional linewidth broad-
ening, Fig. (5.10). At this point we can conclude that for the given
parameters of the 2QD-DFB model, Table (5.2), the injection rate de-
pendent linewidth enhancement factor plays a more dominant role in
the phenomena of linewidth saturation and linewidth rebroadening.

5.2 Integrated Laser Array

So far we have considered only isolated quantum dot semiconductor
lasers and their performance, while on the other hand many of the prac-
tical photonic devices comprise multiple integrated photonic elements.
To enable flexibility and reconfigurability, the design of modern wave-
length demultiplexing (WDM) optical communication networks often
imposes additional functionality on photonic integrated circuits which
act as wavelength switches, such as reconfigurable add-drop multiplex-
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ers (ROADM) and optical cross-connect (OXC) systems. For these
applications as well as for backup sources in point-to-point (WDM)
optical connections, tunable integrated laser arrays can be an indis-
pensable solution.

5.2.1 Design Principles

By integrating a DFB laser, as in Sec. 5.1, with additional photonic de-
vices such as laser couplers and SOAs, it is necessary to reevaluate the
performance of laser diodes. Being a part of a photonic integrated cir-
cuit the laser diodes are often affected by the coupled elements through
back-reflections or the additional heating in case of active devices like
SOAs. Worth mentioning here are the few earlier works on the topic of
back-reflection [59, 60], showing that both the relative intensity noise
and spectral linewidth can be significantly degraded by coupling the
laser directly to a SOA amplifier through amplified spontaneous emis-
sion. This holds however for all types of additional components that
provide either amplified or attenuated feedback, which can affect dra-
matically the linewidth and noise levels [7]. This effect can be both
positive or negative, depending on the nature of the feedback.

The main characterization points of the integrated laser array are
the power and spectral linewidth of the output signal and the tuning
range of the laser array over which the emitted signal carrier is stable.
To ensure a wide tuning range the laser coupler needs to be able to
accommodate sufficient number of wavelength-shifted DFB lasers to
cover the desired wavelength range. An example of a practical laser
array in [61], uses 12 DFB lasers to cover the full C-band wavelength
range (/~ 38 nm). Meaning that the tuning range for an individual
laser is only 3.17 nm, on average. The thermal tuning gradient of the
laser diodes is typically in the range of 0.3 nm/K, while the desired
thermal operating range is around the room temperature. Such a broad
operating spectrum in turn puts a constraint on the laser coupler whose
transmission characteristic should ideally be wavelength invariant over
the considered range. After passing the signal through the coupler
the signal is commonly amplified by the integrated SOA amplifier to
adjust the output power for long range optical transmission.

As in the case of DFB laser examples, Sec. 5.1, the example of laser
array considered here is also limited to a single-step epitaxial growth
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which additionally needs to accommodate the laser coupler and poten-
tially a SOA. Even though this introduces significant constraints on the
design, a positive side is also present. Namely, as the coupler is oper-
ated as a passive component and based on the same active QD layers,
through absorption it can serve as an isolation for the back-reflection
or amplified spontaneous emission in case that the photonic circuit
comprises a SOA amplifier or other additional components. This can
reduce the negative effect of concatenating components and preserve
the signal properties such as spectral linewidth and RIN spectra.

5.2.2 Design of the Laser Coupler

The design of the laser coupler is investigated using the commer-
cial software FIMMPROP, based on the eigenmode expansion method
(EME) [62]. The two coupler designs that we consider are multi-mode
interference (MMI) coupler [63], and a classical Y-junction coupler.
Both coupler designs rely on fundamentally different principles to cou-
ple the optical signal into a single output branch. The Y-coupler cou-
ples the input signals by physically merging the two input branches
via a Y-junction, while the MMI coupler relies on the self-imaging
principle intrinsic to multi-mode waveguides.

Figure 5.12: Simulation of the MMI coupler accommodating 12 laser ports, exci-
tation from the left-hand side.

The interfaces between the photonic devices are known to be prob-
lematic. The transitions from multi-mode to single-mode devices often
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require tapered sections to minimize the losses at the interface. Even
for the case of single-mode to single-mode device coupling the mis-
matching waveguide geometry and transition to different epitaxy can
introduce both reflection and diffraction losses. Due to the technolog-
ical reasons, we are limited to device processing based on a single-step
epitaxial growth. As a consequence, the laser array solution considered
here is based on a uniform epitaxy, while the individual sections can be
operated as active or passive. For this reason we can expect that the
effective indices at the interface between lasers and the laser coupler
in our case will be fairly similar, thus minimizing the reflections at the
interface.

e |nm:musoso7\1msnwonnﬂnmmtsoisomm:somzmmmwﬁmm ml

Figure 5.13: Simulation of the Y-coupler design, excitation from the left-hand side.

Etching depth [um] Guided modes with effective indices

1.9 TE((3.2288) TM;4(3.2255)

2.07 TE10(3.2246) TM(3.2216)

2.12 TE10(3.2231) TM(3.2205)

2.22 TE10(3.2203) TM0(3.2185), TEg(3.1873) TMao(3.1808)
2.3 TE19(3.2184) TM;(3.2171), TEa(3.1774) TMa(3.1738)
2.415 TE10(3.2163) TM(3.2157), TEy(3.1666) TMy(3.1661)

Table 5.3: Guided modes of the Y-coupler for different etching depths of the 5QD-
layer epitaxy, starting from the grating level - 1.9 pm.

If we are comparing the MMI coupler, Fig. (5.12), to a Y-coupler,
Fig. (5.13), the advantages of the MMI coupler can seem difficult
to surpass. The MMI coupler can be particularly useful if the tuning
ranges of the individual lasers are more modest, as it can couple a large



94 CHAPTER 5. SIMULATION EXAMPLES AND BENCHMARKS

number of lasers with a total coupler length ~ 1000 pwm, which is in the
range of the length of DFB laser diodes, Fig. (5.12). For this reason
it can be found in many practical solutions [61], with a fairly broad
transmission characteristic. However, as the quantum dot absorption
in the coupler is polarization dependent and in general atypical for the
MMI coupler design, we have preferred the Y-coupler for the realization
of the laser array. Even though traditionally it supports only two laser
ports, larger arrays can be realized by simply cascading the Y-coupler,

Fig. (5.13).
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Figure 5.14: Sketch of the quantum dot laser epitaxy, relative conduction band
edge and thicknesses of the layers.

What might not have been obvious so far is that the etching depth,
beneficial for the weakly guiding ridge waveguide of the laser, Sec. 4.2,
is in contradiction with the design principles of both coupler types.
In the case of MMI coupler a stronger field confinement is necessary
to excite the higher order modes and for the Y-coupler to minimize
the losses which occur through bending of the coupler branches over
the finite coupler length. As a result, both functioning coupler mod-
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els depicted in Figs. (5.12,5.13), were obtained by additional selective
etching of the coupler section below the level of the surface grating
which was used for the DFB lasers. To put the significance of this
modification into perspective, it is enough to compare the transmis-
sion of Y-coupler with etching depth at the grating level as for the
DFB lasers, 1.9 um, and the modified Y-coupler with further etching
down to 2.12 um, Fig. (5.13), which additionally removes the grating
and the top cladding layer, Fig. (5.14). When excited from the left
hand side this translates to an improvement in transmission from mere
0.7% up to 42.1% per branch. Further etching of the otherwise adi-
abatic coupler at this point could increase the transmission, however,
from the Table (5.3), we can see that this would inevitably introduce
higher order modes that would transmit a fraction of the total power.
This in turn can cause problems if we want to couple the signal from
the coupler to a single-mode SOA or an optical fiber. Another draw-
back that we should not neglect is the introduction of the diffraction
losses through additional etching at the laser-coupler interface which
are already present at the etching level of 2.12 pm.

5.2.3 Spectral Linewidth of the Coupled Lasers

In order to adapt the integrated coupled lasers for the traveling wave
simulation we rely on the simulation results of the Y-coupler, Fig. (5.13),
obtained by the FIMMPROP software [62]. Aside from the determined
transition per branch of 42.1%, we also need to account for the losses at
the laser-coupler interface. As we have mentioned earlier the losses at
the coupler interface are caused mainly by the difference in the etching
depth of the laser ridge and the coupler section. More precisely, at the
interface we step down from 1.9 um etching depth down to 2.12 pum
etching depth. The interface losses were shown to be mostly in the
form of diffraction losses as the variation of effective refractive index
along the device is minor.

For the active laser section we use essentially the same parameters
as for the QD-DFB laser example, Table (5.2), with the slightly altered
values for the internal absorption and the coupling coefficient of the
grating. The internal absorption is set to 11 cm~! and the coupling co-
efficient to 14 ecm ™!, Table (5.4), where the change in the coupling coef-
ficient is somewhat larger but still in the range of the calculated values
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Parameter Value
Quantum dot density, Ny 3.25-10 ¢m—?
Effective active layer thickness, Zl.ss 1 nm
Electron effective mass (InAs), me. 0.023 - myq
Heavy-hole effective mass (InAs), myy, 0.3 - my
Homogeneous broadening (electrons and holes) 15 meV
Inhomogeneous broadening 10 meV
Nonlinear gain saturation coefficient 3.4-10716 cm?
Injection efficiency, n; 0.55
Shockley-Read-Hall recombination coefficient, A 5.5-107 s~
Radiative recombination coefficient, B 1.35-107% em?/s
Auger recombination coefficient, C 0.7-10728 cm®/s
Effective refractive index, n.ss 3.23
Confinement factor, T’ 0.009 (2QD)
Coupling coefficient 14 em ™!
Internal losses 11 em™!

Table 5.4: Parameters for the dynamic simulation of the 2QD-DFB lasers coupled
via Y-coupler.

for the surface grating design, Fig. (5.3). The aforementioned param-
eter changes were performed mainly in order to match the threshold of
the measured LI-curve for the PIC with two coupled QD-DFB lasers.
The simulation is performed only for the design based on 2QD-layer
epitaxy as the gain parameters were adjusted based on the perfor-
mance of the realized 2QD-DFB laser that was available, Fig. (5.5).
The coupler section is modeled as passive, having maximum total ab-
sorption of 34.5 cm ™! at the Bragg wavelength, the calculated losses at
the laser-coupler interface are also included while the total transmis-
sion losses of the Y-coupler determined using the eigenmode expansion
method, Fig. (5.13), are included as lumped at the Y-junction. The
model features can be easily discerned from the longitudinal profiles
of the forward and reverse propagating field envelopes of the traveling
wave model, Fig. (5.15). The phase shift at the left facet is kept the
same as for the DFB model at 60°, Fig. (5.4), as well as the reflectivity
of both facets which are modeled as cleaved.

The performance of the laser integrated to a Y-coupler based on
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Figure 5.15: Forward and reverse propagating envelopes of the simulated
2QD-DFB+Y-coupler integrated optical circuit.

the 2QD-layer epitaxy is particularly interesting to compare to the
performance of the DFB laser design, Figs. (5.5,5.7), as the epitaxy
of the DFB lasers in both cases is the same as well as their length
of 1200 pm. By comparing the simulated and measured Ll-curve at
the left facet of the coupled laser design based on the 2QD-layer epi-
taxy, Fig. (5.16), we can see that the simulation corresponds fairly
well to the measurements with some divergence at the higher injec-
tion currents. The output power is lower than for the DFB design,
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Figure 5.16: Simulated and measured  Figure 5.17: Calculated spectrum at
LI-curve of the coupled laser. the left facet of coupled laser design.
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while from the calculated output spectrum for the sweeping current
Fig. (5.17), we can see that the lasing mode remains stable over the
observed current range without significant deterioration of the side
mode suppression ratio. The spectral linewidth on the other hand is
significantly higher than for the DFB laser, Fig. (5.18), with measured
linewidth reaching a minimum of 1 MHz, compared to 110 kHz for the
DFB design, Fig. (5.7).
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Figure 5.18: Calculated and measured spectral linewidth of the coupled laser design
for 2QD-layer epitaxy and measured linewidth for the design based on 5QD-layer
epitaxy, with included 2QD-layer DFB laser linewidth for comparison.

To understand the mechanism behind the linewidth increase it is
worth considering the effect of the absorbing coupler section on the
active material of the laser. Compared to the DFB design the biggest
change that we make is the concatenation of the absorbing Y-coupler.
By introducing the additional losses we need more gain to reach the
threshold condition, this leads to higher saturation of the quantum
dot state and thus a higher linewidth enhancement factor. Aside from
the negative impact on the linewidth enhancement factor the photon
density in the laser section is also reduced as the resonating field is not
confined only to the laser any more, from the basic Schawlow-Townes
linewidth equation, Eq. (1.2), we can see that this has an additional
negative impact on the linewidth. The extracted mean modal gain
along the laser section at threshold is 20.53 cm™!, which corresponds
to ground state population of p = 0.843, meaning that the laser is
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operating close to full inversion. As a result of this it was necessary to
set the linewidth enhancement factor at threshold to o = 3, in order to
match the measurement results, Fig. (5.18), which suggests a negative
impact of the wetting layer on linewidth enhancement factor even at
lower injection currents. To further support this conclusion we can
also compare the measurements for the 5QD-layer epitaxy, Fig. (5.18),
based on the same design and a DFB section length of 1145 um. For the
5QD-layer design the linewidth reaches a minimum of 370 kHz, and at
a significantly lower saturation of the ground state simply by having
a higher maximum modal gain through increased number of active
layers. For this reason one could also expect an improved performance
of the 2QD-layer epitaxy if the gain saturation is taken into account as
an optimization point, in order to reduce the increase of the linewidth
enhancement factor at higher injection currents.

5.3 High Quality Factor Cavity Design

The distributed feedback laser design, presented in Sec. 5.1, is based
more or less on a traditional design approach used in the previous
decades from bulk to modern quantum well and quantum dot lasers.
Even though the simulation and empirical results of the quantum dot
DFB lasers show significant potential for their application in future
optical communication networks, it is worth considering what can be
done in terms of resonant cavity optimization. To this end we seek to
employ the design features of a novel approach, which has been already
empirically tested on quantum well lasers [50], in order to further re-
duce the spectral linewidth of quantum dot lasers. On the examples
presented here, we will demonstrate that with the combination of high-
performance active material such as quantum dots and an innovative
cavity design we can further reduce the spectral linewidth to below
10 kHz, while investigating the resulting operating conditions.

5.3.1 Design Principles

Traditionally, major concerns regarding the design of edge emitting
lasers include: the stable single mode emission, broad tuning range
and narrow spectral linewidth. With the inclusion of phase shifts in
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the DFB grating, the DFB lasers can easily produce a single-mode
emission and due to the reliable processing steps they have played an
important role in the development of optical communication networks.
The evolution of the active material from bulk to quantized structures
such as quantum wells and quantum dots has provided further signifi-
cant advances in their performance, mainly in terms of the threshold,
efficiency and the modulation rate. The approach to the design of reso-
nant cavity on the other hand has not changed significantly. However,
the encouraging results in [50], clearly show that the cavity design is
worth reconsidering if we want to produce a laser with high spectral
purity of the emitted signal.
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Figure 5.19: Illustration of a laser cavity based on the high quality factor design.

The central idea of the work presented in [50], is the reduction of
the spectral linewidth through increased quality factor of the resonant
cavity. The possible approaches to achieve this, include the reduction
of the internal cavity losses and the increase of reflectivity of the grat-
ing and the facets. The reduction of internal losses can be achieved
either through engineering of the transversal mode to low loss materi-
als or by the introduction of passive laser sections comprising the low
loss materials. The increase of the reflectivities can be also desirable,
however, in extreme cases it can also result in mode hopping. As we
are studying the design based on the high quality factor cavity only
numerically, Fig. (5.19), for the active section we will keep the same
parameters as for the DFB laser case, Sec. 5.1, to provide a better
insight into the resulting performance improvement. The passive side
sections we will consider longer and completely lossless, while keeping
the total device length at 1000 pm. The coupling coefficients r1 23,

will be set higher compared to the DFB design as: x; = 15 cm ™,
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ky = 50 cm~! and k3 = 15 em™!, in order to increase the quality fac-

tor and thus reduce the threshold modal gain and carrier density. To
ensure the low saturation of the quantum dots, aside from the high
coupling coefficients we will also assume the 5QD-layer epitaxy, which
should result in a favorable linewidth enhancement factor. Such a de-
sign approach should result not only in better threshold condition of
the active central section, Fig. (5.19), but also in reduced spontaneous
emission noise in the cavity as the side sections are operated as passive.

5.3.2 Operating Conditions and Linewidth of
the High Quality Factor Design

In order to obtain the single mode operation, we introduce a A/4 phase
shift at the center of the cavity while setting the power reflectivities
of the facets to 2%. The phase shift and the high coupling coefficient
of the active section shift the majority of the resonating photons into
the active region, while the facet reflectivity is reduced in order to
maintain a stable single mode operation at higher injection currents.
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Figure 5.20: Calculated carrier den-  Figure 5.21: Calculated photon den-
sity profile of the high Q-factor design,  sity profile of the high Q-factor design,
with a 300 um long active section. with a 300 pm long active section.

From the photon and carrier density profiles depicted in Figs. (5.20,5.21),
we can see more clearly how the choice of parameters governs the de-
vice operation. The accumulation of the photons in the center of the
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cavity Fig. (5.21), is beneficial for obtaining a lower threshold cur-
rent, as the effective material gain in the cavity is significantly reduced
through passive side sections. On the other hand, we can also see that
the calculated photon density profile at moderate injection of 100 mA,
already has a strong impact on the spatial hole burning of the carrier
population, which becomes apparent if we compare it to the calcu-
lated carrier density profile at threshold, Fig. (5.20). The negative
effect of the spatial hole burning is not only in the common problem
of mode stability arising from the consequent spatial variation of the
modal gain and refractive index, but also in the increase of spontaneous
emission noise as higher carrier densities are necessary to achieve the
same modal gain under a strong gain suppression.
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Figure 5.22: Calculated spectral linewidth of the high Q-factor cavity design, for
varying length of the central active section.

The linewidth calculations, Fig. (5.22), are performed on three de-
sign variations, each with a total device length of 1000 wm, and the
lengths of individual sections as given in Fig. (5.19). The first striking
feature that we can notice is the significantly lower linewidth com-
pared to the classical DFB case based on the same epitaxy, where the
strongest linewidth reduction is observed for the central section length
of 300 pum, yielding a linewidth reduction by a factor of 7.57 at the
minimum of 7 kHz. The calculated average spontaneous emission rate
at threshold of the high Q-factor design with 300 pm long active sec-
tion is Ry, = 2.5346 - 108!, also represents a significant improvement
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Active section length, L, Ground state population, p;,

200 pm 0.82
300 pm 0.71
400 pm 0.66

Table 5.5: Calculated population of the quantum dot ground state for different
active section lengths of the high Q-factor design.

compared to the value of Ry, = 6.721-10%s!, calculated for the 5QD-
layer DFB laser, Sec. 5.1. To get a better overview of how different
effects affect the spectral linewidth, it is useful to recall the modified
Schawlow-Townes linewidth equation, Eq. (1.4). As the spectral line-
width is directly proportional to the spontaneous emission rate, we can
see that the lower spontaneous emission alone contributes already to
the linewidth reduction by a factor of 2.652. The other strong contri-
bution to linewidth reduction is the high photon density in the cavity
obtained by the high coupling coefficients, Fig. (5.21), which on the
other hand is inversely proportional to the spectral linewidth. In gen-
eral we can see that even if the internal losses of the active central
section are left the same as for the DFB case, at 12 cm™!, we can still
obtain a strong linewidth reduction through lossless side sections and
increased coupling coefficients of the grating.
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Figure 5.23: Calculated output power at the left facet of the high Q-factor cavity
design, for varying length of the central active section.
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As we can see from the Fig. (5.22), some care should be taken
when it comes to selection of the length of the active central section.
All three considered designs with varying length of the central section
behave quite differently. This can be better understood if we calculate
the population of the quantum dot ground state, Table (5.5), which is
estimated by comparing the threshold modal gain to calculated max-
imal modal gain of the 5QD-layer epitaxy. The case with the shorter
length of 200 pwm is most critical as it operates close to full inversion, in
which case the linewidth enhancement factor degrades more strongly at
higher injection currents. This can be clearly seen in Fig. (5.22), as the
linewidth consequently broadens as we increase the injection current.
Moreover, the degradation of performance of the shorter active section
can be seen from the calculated LI-curve in reduced output power as
well, Fig. (5.23), as the high gain suppression at higher photon densi-
ties pushes the modal gain to its limits while reducing the differential
gain. The negative effect of the gain suppression can be also further
increased if the coupling coefficient is set too high [64]. This problem
can be alleviated with longer active section length, however, we can
also see that for the higher length of 400 pum, the linewidth is again
degraded but this time by minimizing the positive contribution of the
passive side sections as they get shorter and more spontaneous emis-
sion noise is introduced. For the considered setup, Fig. (5.19), this
leaves the active section length of 300 pm as a compromise between
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Figure 5.24: Calculated Ll-curve of  Figure 5.25: Calculated linewidth of
the high Q-factor design, with reduced  the high Q-factor design, with reduced
losses in a 300 pm long active section. losses in a 300 pm long active section.
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the two aforementioned effects, Fig. (5.22).

In order to obtain even lower linewidths, we follow further design
guidelines given in [50], regarding the reduction of the internal losses in
the active central section by engineering the transversal mode profile
toward the low-loss materials of the ridge waveguide. To that end,
we assume that the internal losses are directly proportional to the
confinement factor, and reduce the both values by a factor of three.
By this we effectively reduce the internal losses from 12 cm ™! to 4 cm ™!,
and the maximal modal gain from roughly 75 cm™! down to 25 cm™!.
The geometry is kept the same as for the case with 300 pm long central
section, while the coupling coefficients are set to: r; = 25 cm ™!, kg =
50 cm ™! and kg = 25 cm ™!, in order to obtain similar threshold current
as in Fig. (5.23). The simulation results of the resulting modifications
are given in Figs. (5.24,5.25), showing further reduction in linewidth
from 7 kHz down to 2 kHz, but at the expense of the maximal output
power. Compared to the minimum linewidth of the 5QD-layer DFB
design of 53 kHz in Sec. 5.1, the modified high Q-factor cavity design
with reduced internal losses yields an impressive linewidth reduction
by a factor of 26.4.

One could also consider some other possible design variations of the
high Q-factor cavity design. In case that the coupling coefficients con-
sidered here are difficult to achieve in practice, one could essentially
try to compensate the lower coupling coefficients by a longer cavity
length. This case is also considered in [64], with somewhat different
parameters, showing favorable results despite the lower coupling coeffi-
cients of the sections. Moreover, the linewidth obtained in Fig. (5.25),
is not necessarily the lowest [65]. One could consider here a further
reduction of the linewidth, through reduction of the internal losses or
by shorter length of the active section, but as shown in Fig. (5.24), at
the cost of the output power.
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Chapter 6

Conclusions and
Outlook

6.1 Major Results

To summarize the achievements presented in this thesis, it is worth re-
calling the motivation for narrow-linewidth lasers and challenges that
accompany their design. The evergrowing need for higher bit rates
in modern optical communication networks imposes the use of higher-
order modulation schemes to satisfy the requirements within the ex-
isting optical network infrastructure. The spectral purity of the mod-
ulated signal comes as a basic requirement for the realization of such
high bit rate systems. To this end we have used high-end quantum dot
epitaxy and optimization of the laser cavity to reach record linewidth
values.

To aid the design process and investigate the interplay of different
factors governing the linewidth of the laser diodes, the QQD-wave laser
simulator was developed from scratch. Compared to other laser sim-
ulators based on the traveling wave model [47,66], we have included
some additional features as the injection dependent linewidth enhance-
ment factor, colored carrier noise and formation of the carrier grating
pattern. This has allowed us to reach new conclusions and in coopera-
tion with experimental partners to demonstrate that when it comes to
linewidth the quantum dot based lasers are capable of outperforming
the bulk and quantum well based laser designs.
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The experimental results in Ch. 5, show the obtained linewidth
of only 110 kHz for the DFB laser design with 2QD-layer epitaxy. It
is important to stress that this is achieved in a single-step epitaxial
growth by relying on the surface Bragg gratings, which enables a pro-
duction of high performance laser diodes through a relatively simple
production process and thus at a reduced cost. The laser model sug-
gests even lower linewidth for the 5QD-layer DFB design, through the
reduction of spontaneous emission noise and linewidth enhancement
factor. To show that the single-step epitaxial growth can be extended
to integrated devices, we have included a design of a two-laser array
in the same technology based on the Y-coupler, which is also sup-
ported by the measurements. The integrated device is shown to be
susceptible to broadening of the linewidth, which can be nevertheless
compensated by careful design of the active section and reduction of
the back-reflections and amplified spontaneous emission. The lowest
linewidth in this case is observed for the laser array based on the 5QD-
layer epitaxy, reaching the minimum linewidth of 370 kHz.

Finally, to investigate the possibility of cavity optimization as a
contributing factor to linewidth reduction, we have applied the laser
model to a novel cavity design [50]. The applied approach to cav-
ity optimization has already been experimentally tested on quantum
well laser with impressive results, and unsurprisingly by combining the
high-performance quantum dots with the cavity optimization the laser
model has predicted the linewidths of even below 10 kHz. In general
we have shown that the quantum dots can be considered as a viable ac-
tive material for future optical communication networks, and that the
laser diodes based on quantum dots do not necessarily require complex
processing to achieve high performance in terms of the spectral purity
of the output signal.

6.2 Outlook

Even though significant milestones were accomplished, regarding the
implementation of the QD-wave laser model some improvements could
still be made. In the case of quantum dot gain model Ch. 3, one could
assume a more realistic geometry for the quantum dots but still the
variation of the dot shape and size intrinsically present in their pro-
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cessing has to be taken into account [22,23]. The same could be said
for the implementation of the material strain which is currently bi-
axial, as the strain together with geometry ultimately determines the
eigenstates of the quantum dots. This way it might not have to be
necessary to correct the results of the eigenstate problem, by relying
on the available gain measurements. Concerning the linewidth en-
hancement factor, the model currently included does take into account
injection dependence [34], but it would be more accurate to include
it through change of the gain dispersion at higher energy transitions
as a result of the Pauli-blocking effect. However, this would require
the calculation of the gain dispersion at each current sweeping step if
not also in time, which would inevitably increase the simulation time.
Other gain related effects that are worth considering are many-body
effects and the self-heating effects that can also have a profound effect
on the gain characteristic of the quantum dots [14].

Regarding the realization of the traveling wave model Ch. 4, for
the possible improvements we can refer to the commercial software
PICwave [66]. For a more accurate simulation of lasers as well as
the SOA components the inclusion of the variation of carrier density
and therefore the material gain over the transversal plane can be a
significant improvement. This especially holds for the simulation of a
SOA amplifier where the gain suppression can vary significantly not
only along the longitudinal axis but transversally as well. In that sense
it would be interesting to investigate the integrated devices coupled to
a SOA | in terms of the linewidth, noise spectra or other properties and
compare them to measurements.






Appendix A

Kramers-Kronig
Relation

As the interdependence of the material gain/loss and the refractive
index is important for better understanding the problem of spectral
linewidth, we discuss here the Kramers-Kronig relation in more de-
tail [67]. In general, the Kramers-Kronig relations can be derived by
calculating the integral of the form:

I :P/oo @) g, (A.1)

r—a

which applies for the function f(z), that is analytic in the upper com-
plex half-plane and vanishes as |w| — co. To obtain the Kramers-
Kronig relations for the complex refractive index we can apply the Eq.
(A.1), to the electric susceptibility, x, of the active material:

o0 /
= 73/ X,(“ ) o, (A.2)
oW —w

where the electric susceptibility, x, governs the polarization of the
material:

P(t) = e [ \(t — 1 E(r)dr, (A.3)

oo

and the causality of x(7), imposes the Kramers-Kronig constraints
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on x(w). If we assume the Lorentz model for the susceptibility the
integral, Eq. (A.2), can be shown to be equal to:

e’} /
I="P [m :fl(i} i}dw' =imx(w). (A4)
Using the relations, x = x'+ix” and € = ¢y(1 + x), we can decompose

the Eq. (A.4), and express it through real and imaginary components
of the permittivity, ¢ and €”:

A e R N N
= )+l ).

By separating the Eq. (A.5), into its real and imaginary components,
we get the Kramers-Kronig relations for the permittivity:

2 ! 1 /
€(w) —e = 73 w,;i(w)d ' (A.6)
w
/, B 2w o0 , — 60 ,
73 /2 — oﬂ (A7)

The complex refractive index can be related to the complex per-
mittivity of the material as:

e =€ +id = (n +in")?, (A.8)

which allows us to write out the Kramers-Kronig relations for the re-
fractive index as well:

l// l
!/
W(w)—1= P/ _oﬂd, (A.9)

2w
n"(w) = P/ ’2—w2 dw'. (A.10)

The imaginary part of the refractive index, n”(w), can be related to
the gain/loss, a(w), of the material using the relation:
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" ca(w)
= A1l
wi(w) = — = (A.11)
which after substituting into Eq.(A.9), gives the Kramers-Kronig re-
lation between the real part of the refractive index and the material
gain/loss:

, e [ al)
n(w)—1=-=-P ———dw'. A12
w-1=%p [" S (A12)
Finally, if we want to relate the change of the refractive index to the
corresponding change of the gain/loss, «, through varying carrier den-
sity for example, we can write:

o0 /
An'(w) = 5P / AﬂL”)de'. (A.13)
0 W —Ww
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The quantization of the active laser medium has enabled numer-
ous advances in fiber-optic communications, e.g., higher efficien-

cy of laser diodes, higher modulation bandwidth, lower spectral
linewidth of the emitted signal. In recent years the quantum dot
lasers have demonstrated a strong potential to continue this
trend, therefore, by progressing from standard quantum well to
quantum dot designs, it can be expected that the quantum dot
lasers will play an increasingly important role in future fiber-op-
tic communications.

The research work presented in this dissertation seeks to fur-
ther develop the quantum dot laser designs and improve the un-
derstanding of complex operating conditions affecting the laser
linewidth. This is achieved by developing a comprehensive laser
simulator, that was applied to design and simulation of edge-
emitting lasers and laser arrays. As a result, the optimized laser
diodes have demonstrated a significantly lower linewidth com-
pared to equivalent quantum well designs. Due to their narrow
linewidth, the realized photonic devices can be a viable solution
for high bit rate fiber-optic networks.
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